login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A348475
a(n) = Product_{k=1..A003056(n)} prime(T(n,k)), where T(n,k) = k-th term in row n of A235791.
1
2, 3, 10, 14, 33, 78, 170, 190, 483, 1218, 2046, 4070, 5330, 8385, 33558, 37842, 47082, 127490, 169510, 269445, 825630, 1250886, 1404858, 1969926, 4270910, 6988190, 13239105, 27506490, 29387490, 61019322, 74958702, 77319606, 191617790, 254235170, 715103895, 1549364190
OFFSET
1,1
COMMENTS
Prime product compactification of A235791.
All terms are squarefree.
LINKS
EXAMPLE
Row 3 of A235791 contains {3,1}, thus, a(3) = prime(3)*prime(1) = 5*2 = 10.
Omar E. Pol's diagram of rows of A235791:
. y row a(n) of A067255* a(n)
Row _| --------------------------
1 _|1| -> 1 = 2
2 _|2 _| -> .1 = 3
3 _|3 |1| -> 1.1 = 10
4 _|4 _|1| -> 1..1 = 14
5 _|5 |2 _| -> .1..1 = 33
6 _|6 _|2|1| -> 11...1 = 78
7 _|7 |3 |1| -> 1.1...1 = 170
8 _|8 _|3 _|1| -> 1.1....1 = 190
9 _|9 |4 |2 _| -> .1.1....1 = 483
10 _|10 _|4 |2|1| -> 11.1.....1 = 1218
11 _|11 |5 _|2|1| -> 11..1.....1 = 2046
12 _|12 _|5 |3 |1| -> 1.1.1......1 = 4070
13 _|13 |6 |3 _|1| -> 1.1..1......1 = 5330
14 _|14 _|6 _|3|2 _| -> .11..1.......1 = 8385
15 _|15 |7 |4 |2|1| -> 11.1..1.......1 = 33558
16 _|16 _|7 |4 |2|1| -> 11.1..1........1 = 37842
...
* we replace 0 with "." for clarity.
MATHEMATICA
Table[Times @@ Array[Prime@ Ceiling[(n + 1)/# - (# + 1)/2] &, Floor[(Sqrt[8 n + 1] - 1)/2]], {n, 35}]
(* Use the b-file to generate k rows of A235791 *)
With[{k = 120}, MapIndexed[Reverse[PrimePi /@ FactorInteger[#][[All, 1]]] &, Import["https://oeis.org/A348475/b348475.txt", "Data"][[1 ;; k, -1]]]] (* Michael De Vlieger, Oct 21 2021 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Michael De Vlieger, Oct 19 2021
STATUS
approved