OFFSET
1,1
COMMENTS
Prime product compactification of A235791.
All terms are squarefree.
LINKS
Michael De Vlieger, Table of n, a(n) for n = 1..10000
EXAMPLE
Row 3 of A235791 contains {3,1}, thus, a(3) = prime(3)*prime(1) = 5*2 = 10.
Omar E. Pol's diagram of rows of A235791:
. y row a(n) of A067255* a(n)
Row _| --------------------------
1 _|1| -> 1 = 2
2 _|2 _| -> .1 = 3
3 _|3 |1| -> 1.1 = 10
4 _|4 _|1| -> 1..1 = 14
5 _|5 |2 _| -> .1..1 = 33
6 _|6 _|2|1| -> 11...1 = 78
7 _|7 |3 |1| -> 1.1...1 = 170
8 _|8 _|3 _|1| -> 1.1....1 = 190
9 _|9 |4 |2 _| -> .1.1....1 = 483
10 _|10 _|4 |2|1| -> 11.1.....1 = 1218
11 _|11 |5 _|2|1| -> 11..1.....1 = 2046
12 _|12 _|5 |3 |1| -> 1.1.1......1 = 4070
13 _|13 |6 |3 _|1| -> 1.1..1......1 = 5330
14 _|14 _|6 _|3|2 _| -> .11..1.......1 = 8385
15 _|15 |7 |4 |2|1| -> 11.1..1.......1 = 33558
16 _|16 _|7 |4 |2|1| -> 11.1..1........1 = 37842
...
* we replace 0 with "." for clarity.
MATHEMATICA
Table[Times @@ Array[Prime@ Ceiling[(n + 1)/# - (# + 1)/2] &, Floor[(Sqrt[8 n + 1] - 1)/2]], {n, 35}]
(* Use the b-file to generate k rows of A235791 *)
With[{k = 120}, MapIndexed[Reverse[PrimePi /@ FactorInteger[#][[All, 1]]] &, Import["https://oeis.org/A348475/b348475.txt", "Data"][[1 ;; k, -1]]]] (* Michael De Vlieger, Oct 21 2021 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Michael De Vlieger, Oct 19 2021
STATUS
approved