login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A348419
Triangular table read by rows: T(n,k) is the k-th entry of the main diagonal of the inverse Hilbert matrix of order n.
1
1, 4, 12, 9, 192, 180, 16, 1200, 6480, 2800, 25, 4800, 79380, 179200, 44100, 36, 14700, 564480, 3628800, 4410000, 698544, 49, 37632, 2857680, 40320000, 133402500, 100590336, 11099088, 64, 84672, 11430720, 304920000, 2134440000, 4249941696, 2175421248, 176679360
OFFSET
1,2
LINKS
Jianing Song, Table of n, a(n) for n = 1..5050 (first 100 rows)
Eric Weisstein's World of Mathematics, Hilbert Matrix
EXAMPLE
The inverse Hilbert matrix of order 4 is given by
[ 16 -120 240 -140]
[-120 1200 -2700 1680]
[ 240 -2700 6480 -4200]
[-140 1680 -4200 2800].
Hence the 4th row is 16, 1200, 6480, 2800.
The first 8 rows of the table are:
1,
4, 12,
9, 192, 180,
16, 1200, 6480, 2800,
25, 4800, 79380, 179200, 44100,
36, 14700, 564480, 3628800, 4410000, 698544,
49, 37632, 2857680, 40320000, 133402500, 100590336, 11099088,
64, 84672, 11430720, 304920000, 2134440000, 4249941696, 2175421248, 176679360,
...
MAPLE
T:= n-> (M-> seq(M[i, i], i=1..n))(1/LinearAlgebra[HilbertMatrix](n)):
seq(T(n), n=1..8); # Alois P. Heinz, Jun 19 2022
MATHEMATICA
T[n_, k_] := Inverse[HilbertMatrix[n]][[k, k]]; Table[T[n, k], {n, 1, 8}, {k, 1, n}] // Flatten (* Amiram Eldar, Oct 18 2021 *)
PROG
(PARI) T(n, k) = (1/mathilbert(n))[k, k]
CROSSREFS
Cf. A189766 (row sums), A189765, A005249.
A210356 gives the maximum value of each row and A210357 gives the positions of the maximum values.
Main diagonal gives A000515(n-1).
Sequence in context: A307853 A334768 A247327 * A238581 A063608 A074258
KEYWORD
nonn,tabl
AUTHOR
Jianing Song, Oct 18 2021
STATUS
approved