login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangular table read by rows: T(n,k) is the k-th entry of the main diagonal of the inverse Hilbert matrix of order n.
1

%I #26 Jun 19 2022 13:42:36

%S 1,4,12,9,192,180,16,1200,6480,2800,25,4800,79380,179200,44100,36,

%T 14700,564480,3628800,4410000,698544,49,37632,2857680,40320000,

%U 133402500,100590336,11099088,64,84672,11430720,304920000,2134440000,4249941696,2175421248,176679360

%N Triangular table read by rows: T(n,k) is the k-th entry of the main diagonal of the inverse Hilbert matrix of order n.

%H Jianing Song, <a href="/A348419/b348419.txt">Table of n, a(n) for n = 1..5050</a> (first 100 rows)

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/HilbertMatrix.html">Hilbert Matrix</a>

%e The inverse Hilbert matrix of order 4 is given by

%e [ 16 -120 240 -140]

%e [-120 1200 -2700 1680]

%e [ 240 -2700 6480 -4200]

%e [-140 1680 -4200 2800].

%e Hence the 4th row is 16, 1200, 6480, 2800.

%e The first 8 rows of the table are:

%e 1,

%e 4, 12,

%e 9, 192, 180,

%e 16, 1200, 6480, 2800,

%e 25, 4800, 79380, 179200, 44100,

%e 36, 14700, 564480, 3628800, 4410000, 698544,

%e 49, 37632, 2857680, 40320000, 133402500, 100590336, 11099088,

%e 64, 84672, 11430720, 304920000, 2134440000, 4249941696, 2175421248, 176679360,

%e ...

%p T:= n-> (M-> seq(M[i, i], i=1..n))(1/LinearAlgebra[HilbertMatrix](n)):

%p seq(T(n), n=1..8); # _Alois P. Heinz_, Jun 19 2022

%t T[n_, k_] := Inverse[HilbertMatrix[n]][[k, k]]; Table[T[n, k], {n, 1, 8}, {k, 1, n}] // Flatten (* _Amiram Eldar_, Oct 18 2021 *)

%o (PARI) T(n,k) = (1/mathilbert(n))[k,k]

%Y Cf. A189766 (row sums), A189765, A005249.

%Y A210356 gives the maximum value of each row and A210357 gives the positions of the maximum values.

%Y Main diagonal gives A000515(n-1).

%K nonn,tabl

%O 1,2

%A _Jianing Song_, Oct 18 2021