The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A348405 a(0) = 1, a(n) + a(n+1) = round(2^n/9), n >= 0. 2
 1, -1, 1, -1, 2, 0, 4, 3, 11, 17, 40, 74, 154, 301, 609, 1211, 2430, 4852, 9712, 19415, 38839, 77669, 155348, 310686, 621382, 1242753, 2485517, 4971023, 9942058, 19884104, 39768220, 79536427, 159072867, 318145721, 636291456, 1272582898, 2545165810 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 LINKS Harvey P. Dale, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (1,2,-1,1,2). FORMULA a(n+1) = 2*a(n) - A104581(n+6). a(n) + a(n+1) = A113405(n). a(n) + a(n+3) = A001045(n). a(n+2) = a(n) + A131666(n). From Thomas Scheuerle, Oct 18 2021: (Start) G.f.: (x^4-x^3+2x-1)/((2*x^3-3*x^2+3*x-1)*(x+1)^2). A172481(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n, k)*a(2*n-k). With negative sign for ...*a(1+2*n-k) and ...*a(3+2*n-k) too. A175656(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n, k)*a(2+2*n-k). A136298(n+1) = Sum_{k=0..n} (-1)^(n-k)*binomial(n, k)*a(4+2*n-k). A348407(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n, k)*(a(2+2*n-k) - 2*a(1+2*n-k) - a(2*n-k)). (End) MATHEMATICA CoefficientList[ Series[(x^4-x^3+2x-1)/((2*x^3-3*x^2+3*x-1)*(x+1)^2), {x, 0, 40}], x] (* Thomas Scheuerle, Oct 17 2021 *) nxt[{n_, a_}]:={n+1, Round[(2^n)/9]-a}; NestList[nxt, {0, 1}, 40][[All, 2]] (* or *) LinearRecurrence[{1, 2, -1, 1, 2}, {1, -1, 1, -1, 2}, 40] (* Harvey P. Dale, Apr 28 2022 *) CROSSREFS Cf. A139797 (a(n) + a(n+1) = round(2^n/9) too, but a(0) = 0). Cf. A001045, A104581, A113405, A131666. Cf. A136298, A172481, A175656, A348407. Sequence in context: A277333 A248663 A335426 * A093443 A366372 A099092 Adjacent sequences: A348402 A348403 A348404 * A348406 A348407 A348408 KEYWORD sign AUTHOR Paul Curtz, Oct 17 2021 EXTENSIONS a(22)-a(36) from Thomas Scheuerle, Oct 17 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 6 17:27 EDT 2024. Contains 374981 sequences. (Running on oeis4.)