login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A335426
a(1) = 0; thereafter a(2^(2^k)) = 0 for k > 0, and for other even numbers n, a(n) = 1+a(n/2), and for odd numbers n, a(n) = 2*a(A064989(n)).
2
0, 1, 2, 0, 4, 3, 8, 1, 0, 5, 16, 4, 32, 9, 6, 0, 64, 1, 128, 6, 10, 17, 256, 5, 0, 33, 2, 10, 512, 7, 1024, 1, 18, 65, 12, 2, 2048, 129, 34, 7, 4096, 11, 8192, 18, 8, 257, 16384, 6, 0, 1, 66, 34, 32768, 3, 20, 11, 130, 513, 65536, 8, 131072, 1025, 12, 2, 36, 19, 262144, 66, 258, 13, 524288, 3, 1048576, 2049, 2, 130, 24, 35, 2097152, 8, 0, 4097
OFFSET
1,3
FORMULA
a(1) = 0, and then after, a(2^(2^k)) = 0 for k > 0, and for other even numbers n, a(n) = 1+a(n/2), and for odd numbers n, a(n) = 2*a(A064989(n)).
a(n) = A335427(A225546(n)).
a(A003961(n)) = 2 * a(n).
PROG
(PARI)
A064989(n) = {my(f); f = factor(n); if((n>1 && f[1, 1]==2), f[1, 2] = 0); for (i=1, #f~, f[i, 1] = precprime(f[i, 1]-1)); factorback(f)};
A209229(n) = (n && !bitand(n, n-1));
A335426(n) = if(n<=2, n-1, if(!(n%2), if(A209229(n) && A209229(valuation(n, 2)), 0, 1+A335426(n/2)), 2*A335426(A064989(n))));
\\ Alternatively:
A335426(n) = if(1==n, 0, my(e=isprimepower(n)); if(e>1 && A209229(e), 0, if(!(n%2), 1+A335426(n/2), 2*A335426(A064989(n)))));
CROSSREFS
Cf. A082522 (gives indices of zeros after a(1)=0).
Sequence in context: A345232 A277333 A248663 * A348405 A093443 A366372
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 15 2020
STATUS
approved