The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A082522 p^(2^k) with p prime and k>0. 4
 4, 9, 16, 25, 49, 81, 121, 169, 256, 289, 361, 529, 625, 841, 961, 1369, 1681, 1849, 2209, 2401, 2809, 3481, 3721, 4489, 5041, 5329, 6241, 6561, 6889, 7921, 9409, 10201, 10609, 11449, 11881, 12769, 14641, 16129, 17161, 18769, 19321, 22201, 22801 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Every positive square (A000290 without 0) is the product of a unique subset of these numbers. The lexicographically earliest (when ordered) minimal set of generators for the positive squares as a group under A059897(.,.); the intersection of A050376 and A000290. - Peter Munn, Aug 25 2019 LINKS Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 Eric Weisstein's World of Mathematics, Group Eric Weisstein's World of Mathematics, Prime Power. Wikipedia, Generating set of a group FORMULA a(n) = A050376(A181970(n)) = A050376(n)^2. - Vladimir Shevelev, Apr 05 2013 a(n) ~ n^2 log^2 n. - Charles R Greathouse IV, Oct 19 2015 EXAMPLE 3^(2^2)=81, therefore 81 is a term. PROG (PARI) lst(lim)=my(v=List(apply(n->n^2, primes(primepi(sqrtint(lim))))), t); forprime(p=2, (lim+.5)^(1/4), t=p^2; while((t=t^2)<=lim, listput(v, t))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Apr 10 2012 CROSSREFS A050376 without A000040. Cf. A000290, A000961, A025475, A059897. Sequence in context: A056798 A036454 A115648 * A279096 A299153 A133900 Adjacent sequences:  A082519 A082520 A082521 * A082523 A082524 A082525 KEYWORD nonn AUTHOR Reinhard Zumkeller, May 11 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 5 06:13 EDT 2020. Contains 333238 sequences. (Running on oeis4.)