login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A175656
Eight bishops and one elephant on a 3 X 3 chessboard. G.f.: (1-3*x^2)/(1-3*x+4*x^3).
5
1, 3, 6, 14, 30, 66, 142, 306, 654, 1394, 2958, 6258, 13198, 27762, 58254, 121970, 254862, 531570, 1106830, 2301042, 4776846, 9903218, 20505486, 42409074, 87614350, 180821106, 372827022, 768023666, 1580786574, 3251051634
OFFSET
0,2
COMMENTS
The a(n) represent the number of n-move routes of a fairy chess piece starting in the central square (m = 5) on a 3 X 3 chessboard. This fairy chess piece behaves like a bishop on the eight side and corner squares but on the central square the bishop turns into a raging elephant, see A175654.
The sequence above corresponds to 24 A[5] vectors with decimal values 7, 13, 37, 67, 70, 73, 76, 97, 100, 133, 193, 196, 259, 262, 265, 268, 289, 292, 322, 328, 352, 385, 388 and 448. These vectors lead for the side squares to A000079 and for the corner squares to A172481.
FORMULA
G.f.: (1-3*x^2)/(1 - 3*x + 4*x^3).
a(n) = 3*a(n-1) - 4*a(n-3) with a(0)=1, a(1)=3 and a(2)=6.
a(n) = ((3*n+22)*2^n - 4*(-1)^n)/18.
MAPLE
with(LinearAlgebra): nmax:=29; m:=5; A[5]:= [0, 0, 0, 0, 0, 0, 1, 1, 1]: A:=Matrix([[0, 0, 0, 0, 1, 0, 0, 0, 1], [0, 0, 0, 1, 0, 1, 0, 0, 0], [0, 0, 0, 0, 1, 0, 1, 0, 0], [0, 1, 0, 0, 0, 0, 0, 1, 0], A[5], [0, 1, 0, 0, 0, 0, 0, 1, 0], [0, 0, 1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, 1, 0, 0, 0], [1, 0, 0, 0, 1, 0, 0, 0, 0]]): for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m, k], k=1..9): od: seq(a(n), n=0..nmax);
MATHEMATICA
CoefficientList[Series[(1 - 3 x^2)/(1 - 3 x + 4 x^3), {x, 0, 29}], x] (* Michael De Vlieger, Nov 02 2018 *)
LinearRecurrence[{3, 0, -4}, {1, 3, 6}, 30] (* Harvey P. Dale, Aug 12 2020 *)
PROG
(Magma) [((3*n+22)*2^n-4*(-1)^n)/18: n in [0..40]]; // Vincenzo Librandi, Aug 04 2011
(PARI) vector(40, n, n--; ((3*n+22)*2^n - 4*(-1)^n)/18) \\ G. C. Greubel, Nov 03 2018
CROSSREFS
Cf. A175655 (central square).
Sequence in context: A083797 A308580 A192672 * A196450 A131244 A077926
KEYWORD
nonn,easy
AUTHOR
Johannes W. Meijer, Aug 06 2010
STATUS
approved