login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A175659
Eight bishops and one elephant on a 3 X 3 chessboard: a(n)= (3^(n+1)-Jacobsthal(n+1))-(3^n-Jacobsthal(n)), with Jacobsthal=A001045.
3
1, 6, 16, 52, 156, 476, 1436, 4332, 13036, 39196, 117756, 353612, 1061516, 3185916, 9560476, 28686892, 86071596, 258236636, 774753596, 2324348172, 6973219276, 20920007356, 62760721116, 188283561452, 564853480556
OFFSET
0,2
COMMENTS
The a(n) represent the number of n-move routes of a fairy chess piece starting in the central square (m = 5) on a 3 X 3 chessboard. This fairy chess piece behaves like a bishop on the eight side and corner squares but on the central square the bishop turns into a raging elephant, see A175654.
The sequence above corresponds to 4 A[5] vectors with decimal values 343, 349, 373 and 469. These vectors lead for the side squares to A000079 and for the corner squares to A093833 (a(n)=3^n-Jacobsthal(n)).
FORMULA
G.f.: (1+2*x-7*x^2)/(1-4*x+x^2+6*x^3).
a(n) = 4*a(n-1)-a(n-2)-6*a(n-3) with a(0)=1, a(1)=6 and a(2)=16.
a(n) = (-2*(-1)^n)/3-2^n/3+2*3^n. [Colin Barker, Oct 07 2012]
MAPLE
nmax:=24; m:=5; A[5]:= [1, 0, 1, 0, 1, 0, 1, 1, 1]: A:=Matrix([[0, 0, 0, 0, 1, 0, 0, 0, 1], [0, 0, 0, 1, 0, 1, 0, 0, 0], [0, 0, 0, 0, 1, 0, 1, 0, 0], [0, 1, 0, 0, 0, 0, 0, 1, 0], A[5], [0, 1, 0, 0, 0, 0, 0, 1, 0], [0, 0, 1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, 1, 0, 0, 0], [1, 0, 0, 0, 1, 0, 0, 0, 0]]): for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m, k], k=1..9): od: seq(a(n), n=0..nmax);
MATHEMATICA
CoefficientList[Series[(1 + 2 x - 7 x^2) / (1 - 4 x + x^2 + 6 x^3), {x, 0, 40}], x] (* Vincenzo Librandi, Jul 21 2013 *)
PROG
(Magma) I:=[1, 6, 16]; [n le 3 select I[n] else 4*Self(n-1)-Self(n-2)-6*Self(n-3): n in [1..35]]; // Vincenzo Librandi, Jul 21 2013
CROSSREFS
Cf. A000079, A001045, A093833, A175654, A175655 (central square).
Sequence in context: A301978 A275585 A026086 * A221270 A316984 A192000
KEYWORD
easy,nonn
AUTHOR
Johannes W. Meijer, Aug 06 2010
STATUS
approved