|
|
A301978
|
|
Euler transform of A065958.
|
|
4
|
|
|
1, 1, 6, 16, 51, 127, 367, 897, 2342, 5662, 13894, 32656, 77076, 176586, 403526, 904140, 2013267, 4418167, 9628682, 20741434, 44362988, 93984842, 197731390, 412619250, 855408327, 1760687593, 3601827236, 7321181534, 14796204874, 29730215150, 59419375058
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
|
|
FORMULA
|
G.f.: Product_{k>=1} 1/(1-x^k)^A065958(k).
a(n) ~ exp(4*(7*Zeta(3))^(1/4) * n^(3/4) / sqrt(3*Pi) - sqrt(Pi) * n^(1/4) / (4*3^(3/2) * (7*Zeta(3))^(1/4)) - Zeta(3) / (4*Pi^2)) * 3^(1/4) * (7*Zeta(3))^(1/8) / (2^(3/2) * Pi^(3/4) * n^(5/8)).
|
|
MATHEMATICA
|
nmax = 40; CoefficientList[Series[Exp[Sum[Sum[Sum[MoebiusMu[k/d]^2*d^2, {d, Divisors@k}] * x^(j*k) / j, {k, 1, Floor[nmax/j] + 1}], {j, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 31 2018 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|