login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A308580
a(n) = 3*2^n + n^2 - n.
1
3, 6, 14, 30, 60, 116, 222, 426, 824, 1608, 3162, 6254, 12420, 24732, 49334, 98514, 196848, 393488, 786738, 1573206, 3146108, 6291876, 12583374, 25166330, 50332200, 100663896, 201327242, 402653886, 805307124, 1610613548, 3221226342, 6442451874, 12884902880, 25769804832
OFFSET
0,1
COMMENTS
Number of connected induced subgraphs in the n-dipyramidal graph (for n >=3).
LINKS
Eric Weisstein's World of Mathematics, Connected Graph
Eric Weisstein's World of Mathematics, Dipyramidal Graph
Eric Weisstein's World of Mathematics, Vertex-Induced Subgraph
FORMULA
a(n) = 3*2^n + n^2 - n.
a(n) = 5*a(n-1) - 9*a(n-2) + 7*a(n-3) - 2*a(n-4).
G.f.: (3 - 9*x + 11*x^2 - 7*x^3)/((-1 + x)^3*(-1 + 2*x)).
MATHEMATICA
Table[3 2^n + n^2 - n, {n, 0, 40}]
LinearRecurrence[{5, -9, 7, -2}, {6, 14, 30, 60}, {0, 20}]
CoefficientList[Series[(3 - 9 x + 11 x^2 - 7 x^3)/((-1 + x)^3 (-1 + 2 x)), {x, 0, 20}], x]
CROSSREFS
Sequence in context: A307457 A077067 A083797 * A192672 A175656 A196450
KEYWORD
nonn,easy
AUTHOR
Eric W. Weisstein, Jun 08 2019
STATUS
approved