login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 3*2^n + n^2 - n.
1

%I #5 Jun 09 2019 01:24:31

%S 3,6,14,30,60,116,222,426,824,1608,3162,6254,12420,24732,49334,98514,

%T 196848,393488,786738,1573206,3146108,6291876,12583374,25166330,

%U 50332200,100663896,201327242,402653886,805307124,1610613548,3221226342,6442451874,12884902880,25769804832

%N a(n) = 3*2^n + n^2 - n.

%C Number of connected induced subgraphs in the n-dipyramidal graph (for n >=3).

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ConnectedGraph.html">Connected Graph</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/DipyramidalGraph.html">Dipyramidal Graph</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Vertex-InducedSubgraph.html">Vertex-Induced Subgraph</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (5, -9, 7, -2).

%F a(n) = 3*2^n + n^2 - n.

%F a(n) = 5*a(n-1) - 9*a(n-2) + 7*a(n-3) - 2*a(n-4).

%F G.f.: (3 - 9*x + 11*x^2 - 7*x^3)/((-1 + x)^3*(-1 + 2*x)).

%t Table[3 2^n + n^2 - n, {n, 0, 40}]

%t LinearRecurrence[{5, -9, 7, -2}, {6, 14, 30, 60}, {0, 20}]

%t CoefficientList[Series[(3 - 9 x + 11 x^2 - 7 x^3)/((-1 + x)^3 (-1 + 2 x)), {x, 0, 20}], x]

%K nonn,easy

%O 0,1

%A _Eric W. Weisstein_, Jun 08 2019