login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A308583 Triangle read by rows: T(n,k) = number of aperiodic chiral bracelets (turnover necklaces with no reflection symmetry and period n) with n beads, k of which are white and n - k are black, for n >= 1 and 1 <= k <= n. 2
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 2, 2, 2, 0, 0, 0, 0, 0, 3, 4, 4, 3, 0, 0, 0, 0, 0, 4, 6, 10, 6, 4, 0, 0, 0, 0, 0, 5, 10, 16, 16, 10, 5, 0, 0, 0, 0, 0, 7, 14, 28, 29, 28, 14, 7, 0, 0, 0, 0, 0, 8, 20, 42, 56, 56, 42, 20, 8, 0, 0, 0, 0, 0, 10, 26, 64, 90, 113, 90, 64, 26, 10, 0, 0, 0, 0, 0, 12, 35, 90, 150, 197, 197, 150, 90, 35, 12, 0, 0, 0, 0, 0, 14, 44, 126, 222, 340, 368, 340, 222, 126, 44, 14, 0, 0, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
1,30
COMMENTS
For k = 1, 4, or a prime, the columns of this triangular array are exactly the same as the corresponding columns for the triangular array A180472. In other words, all chiral bracelets with n beads, k of which are white and n - k are black, are aperiodic if k = 1, 4, or a prime.
Note that, T(n, k) is also the number of aperiodic dihedral compositions of n with k parts and no reflection symmetry. Since T(n, k) = T(n, n - k), T(n, k) is also the number of aperiodic dihedral compositions of n with n - k parts and no reflection symmetry.
LINKS
Petros Hadjicostas, Formulas for chiral bracelets, 2019.
Arnold Knopfmacher and Neville Robbins, Some properties of dihedral compositions, Util. Math. 92 (2013), 207-220.
FORMULA
T(n, k) = Sum_{d|gcd(n,k)} mu(d) * A180472(n/d, k/d) for 1 <= k <= n.
T(n, k) = T(n, n - k) for 1 <= k <= n - 1.
T(n, k) = (1/(2*k)) * Sum_{d|gcd(n, k)} mu(d) * (binomial(n/d - 1, k/d - 1) - k * binomial(floor(b(n, k, d)/2), floor(k/(2*d)))) for 1 <= k <= n, where b(n, k, d) = (n/d) + ((-1)^(k/d) - 1)/2.
T(n, k) = (1/(2*n)) * Sum_{d|gcd(n, k)} mu(d) * (binomial(n/d, k/d) - n * binomial(floor(b(n, k, d)/2), floor(k/(2*d)))) for 1 <= k <= n, where b(n, k, d) = (n/d) + ((-1)^(k/d) - 1)/2.
G.f. for column k >= 1: (x^k/(2*k)) * Sum_{d|k} mu(d) * (1/(1 - x^d)^(k/d) - k * (1 + x^d)/(1 - x^(2*d))^floor((k/(2*d)) + 1)).
Bivariate g.f.: Sum_{n,k >= 1} T(n, k)*x^n*y^k = (1/2) * Sum_{d >= 1} mu(d) * (1 - (1 + x^d) * (1 + x^d*y^d) / (1 - x^(2*d) * (1 + y^(2*d))) - (1/2) * Sum_{d >= 1} (mu(d)/d) * log(1 - x^d * (1 + y^d)).
EXAMPLE
The triangle begins (with rows for n >= 1 and columns for k >= 1) as follows:
0;
0, 0;
0, 0, 0;
0, 0, 0, 0;
0, 0, 0, 0, 0;
0, 0, 1, 0, 0, 0;
0, 0, 1, 1, 0, 0, 0;
0, 0, 2, 2, 2, 0, 0, 0;
0, 0, 3, 4, 4, 3, 0, 0, 0;
0, 0, 4, 6, 10, 6, 4, 0, 0, 0;
0, 0, 5, 10, 16, 16, 10, 5, 0, 0, 0;
0, 0, 7, 14, 28, 29, 28, 14, 7, 0, 0, 0;
0, 0, 8, 20, 42, 56, 56, 42, 20, 8, 0, 0, 0;
0, 0, 10, 26, 64, 90, 113, 90, 64, 26, 10, 0, 0, 0;
...
Notice, for example, that T(14, 6) = 90 <> 91 = A180472(14, 6). Out of the 91 chiral bracelets with 6 W and 8 B beads, only WWBWBBBWWBWBBB is periodic.
Using Frank Ruskey's website (listed above) to generate bracelets of fixed content (6, 3) with string length n = 9 and alphabet size 2, we get the following A005513(n = 9) = 7 bracelets: (1) WWWWWWBBB, (2) WWWWWBWBB, (3) WWWWBWWBB, (4) WWWWBWBWB, (5) WWWBWWWBB, (6) WWWBWWBWB, and (7) WWBWWBWWB. From these, bracelets 1, 4, 5, and 7 have reflection symmetry, while bracelets 2, 3 and 6 have no reflection symmetry. Because chiral bracelets 2, 3, and 6 are aperiodic as well, we have T(9, 3) = 3 = T(9, 6).
Starting with a black bead, we count that bead and how many white beads follow (in one direction), and continue this process until we count all beads around the circle. We thus use MacMahon's correspondence to get the following dihedral compositions of n = 9 into 3 parts: (1) 1 + 7 + 1, (2) 1 + 2 + 6, (3) 1 + 3 + 5, (4) 2 + 5 + 2, (5) 4 + 1 + 4, (6) 2 + 3 + 4, and (7) 3 + 3 + 3. Again, dihedral compositions 1, 4, 5, and 7 are symmetric (have reflection symmetry), while dihedral compositions 2, 3, and 6 are not symmetric. In addition, chiral dihedral compositions 2, 3, and 6 are aperiodic as well, and so (again) T(9, 3) = 3.
We may also start with a white bead and count that bead and how many black beads follow (in one direction), and continue this process until we count all beads around the circle. We thus use MacMahon's correspondence again to get the following (conjugate) dihedral compositions of n = 9 into 6 parts: (1) 1 + 1 + 1 + 1 + 1 + 4, (2) 1 + 1 + 1 + 1 + 2 + 3, (3) 1 + 1 + 1 + 2 + 1 + 3, (4) 1 + 1 + 1 + 2 + 2 + 2, (5) 1 + 1 + 2 + 1 + 1 + 3, (6) 1 + 1 + 2 + 1 + 2 + 2, and (7) 1 + 2 + 1 + 2 + 1 + 2. Again, dihedral compositions 1, 4, 5, and 7 have reflection symmetries, while dihedral compositions 2, 3, and 6 do not have reflection symmetries. Chiral dihedral compositions 2, 3, and 6 are aperiodic as well, and hence T(9, 6) = 3.
CROSSREFS
Cf. A032239 (row sums for n >= 3), A180472.
Cf. A001399 (column k = 3 with a different offset), A008804 (column k = 4 with a different offset), A032246 (column k = 5), A032247 (column k = 6), A032248 (column k = 7), A032249 (column k = 8).
Sequence in context: A049801 A076953 A180472 * A093315 A204267 A237452
KEYWORD
nonn,tabl
AUTHOR
Petros Hadjicostas, Jun 08 2019
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 28 09:04 EDT 2024. Contains 371240 sequences. (Running on oeis4.)