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1 The first formula for the g.f. of the number of aperiodic chiral

bracelets of two colors

Let ak(n) be the number of bracelets (turnover necklaces) of length n that have no reflection

symmetry and consist of k white beads and n−k black beads. Such bracelets (with no reflection

symmetry) are also called chiral.

Herbert Kociemba has proved that, for fixed k ∈ Z>0, the generating function of the sequence

(ak(n) : n ∈ Z>0) is given by

fk(x) =
∞∑
n=1

ak(n)xn =
xk

2

1

k

∑
m|k

φ(m)

(1− xm)k/m
− 1 + x

(1− x2)b
k
2
+1c

 , (1)

where φ(·) is Euler’s totient function. See, for example, the documentation of the following

sequences in the OEIS: A008804, A032246, A032247, A032248, A032249, and A032250.

Note that, unlike Bower [1] (in the documentation of the DHK transform), we trivially

assume that all bracelets of length 1 or 2 do have reflection symmetry. Thus, we trivially have

ak(1) = 0 = ak(2) for all k ∈ Z>0,

and this is reflected in Kociemba’s formula (1) above. This is because, for a bracelet with 1

bead, we may imagine an axis of symmetry passing through the single bead, while for a bracelet

of length 2, we may imagine an axis of symmetry passing through the two beads (assuming they

are placed diametrically opposite of each other on a circle). If a bracelet of length 2 has two

beads of identical color, we may also consider an axis of symmetry going between these two

beads (to the left and to the right of each one of them).

Let bk(n) be the number of aperiodic bracelets (turnover necklaces) of length n that have no

reflection symmetry and consist of k white beads and n− k black beads. Using the generating

function fk(x) in Kocienba’s formula (1) above, we prove that, for fixed k ∈ Z>0, the generating

function of the sequence (bk(n) : n ∈ Z>0) is given by

gk(x) =

∞∑
n=1

bk(n)xn =
∑
d|k

µ(d) f k
d
(xd), (2)

where µ(·) is the Möbius function. In Section 3 of this note, we prove a more explicit formula

for gk(x) (see equation (10)).

Equation (2) can be established if we prove either one of the following two equivalent for-

mulas:

ak(n) =
∑

d| gcd(n,k)

b k
d

(n
d

)
and bk(n) =

∑
d| gcd(n,k)

µ(d) a k
d

(n
d

)
(k, n ∈ Z>0). (3)
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(Note that ak(n) = 0 = bk(n) when 0 < n < k.)

Proof of equation (2) from equations (3): Using equations (3), we get

gk(x) =
∞∑
n=1

bk(n)xn =
∞∑
n=1

 ∑
d| gcd(n,k)

µ(d) a k
d

(n
d

)xn.

Letting m = n/d, we get

gk(x) =

∞∑
m=1

∑
d|k

µ(d) a k
d

(m)

xmd =
∑
d|k

µ(d)

( ∞∑
m=1

a k
d

(m)
(
xd
)m)

=
∑
k|d

µ(d) f k
d
(xd),

which establishes equation (2).

For each h ∈ Z>0, let ak(n;h) be the number of bracelets (turnover necklaces) of length n

and period h that have no reflection symmetry and consist of k white beads and n − k black

beads. Equations (3) can be established if we prove the following equalities:

ak(n; d) = b k
d

(n
d

)
for all n, k, d ∈ Z>0 with d| gcd(n, k). (4)

Proof of equations (3) from equations (4): It is sufficient to prove only the first one

of equations (3) (since the first one implies the second one). Note also that the period d of a

bracelet of length n that has no reflection symmetry and consists of k white beads and n−k black

beads should divide both n and k (and thus, n− k as well). It thus follows from equations (4)

that, for n, k ∈ Z>0,

ak(n) =
∑

d| gcd(n,k)

ak(n; d) =
∑

d| gcd(n,k)

b k
d

(n
d

)
.

This establishes equations (3).

For d = 1, equations (4) are obvious. The most difficult part of this note is establishing

equations (4) when d ≥ 2. We essentially have to prove that, if a bracelet of length n/d with

k/d white beads and (n − k)/d black beads has a reflection symmetry, then a bracelet that

consists of d copies of this bracelet also has a reflection symmetry. We also have to prove the

converse: if a bracelet of length n and period d consists of k white beads and n− k black beads

and has a reflection property, then there is a contiguous part of it of length n/d that consists

of k/d white beads and (n − k)/d black beads, has a reflection property, and when repeated d

times produces the original bracelet.
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Proof of equations (4): Assume d| gcd(n, k) and d ≥ 2. We consider two cases: (a) n/d

is odd, and (b) n/d is even.

Case (a): n/d is odd. If n/d = 1, then a bracelet of length n and period d = n consists

of n white beads and 0 black beads (i.e., k = d = n). Such a bracelet obviously has a reflection

property, and so does a bracelet of length n/d = 1 consisting of a bead of the same color as the

beads in the original bracelet. The converse is also true.

If n/d > 1, consider a bracelet of length n/d with k/d white beads and (n−k)/d black beads

that has reflection symmetry; say its beads are c1, . . . , cs, b, cs, . . . , c1, where s = (n/d)−1
2 . It

obviously has an axis of symmetry through b and the middle of the two beads c1. Now, suppose

we repeat it d times to create a bracelet of length n, which obviously would have k white beads

and n − k black beads. Starting from one copy, we name the copies (going in one direction)

1, 2, . . . , d.

If d is even, then the bracelet of length n has an axis of symmetry going through beads b of

copies 1 and d
2 + 1. It also has another axis of symmetry going between the two consecutive c1

beads of copies d and 1 and between the consecutive c1 beads of copies d
2 and d

2 + 1. (If d = 2,

then obviously d = d
2 + 1 and 1 = d

2 .) It thus has a reflection symmetry.

If d is odd ≥ 3, then the bracelet of length n has an axis of symmetry going through bead

b of copy 1 and through the middle of two (consecutive) beads c1 of copies d+1
2 and d+3

2 (and

thus, it has a reflection symmetry).

We may also consider the converse: start with a bracelet of length n (with n > d and n/d

odd) that has a reflection symmetry, has period d, and consists of k white beads and (n− k)/d

beads. We may prove (using a similar argument as above) that it can be generated by a bracelet

of length n/d that has a reflection symmetry and consists of k/d white beads and (n − k)/d

black beads. The proof of the converse is actually more complicated, but we omit the details.

(A complication in the proof of the converse arises from the fact that a bracelet with a reflection

property and an even number of beads may have more than one axes of symmetry.)

Case (b): n/d is even. Consider a bracelet of length n/d that has a reflection symmetry

and consists of k/d white beads and (n−k)/d black beads. Then its beats are either of the form

c1, . . . , cs, cs, . . . , c1, where s = n
2d (with an axis of symmetry going between the two cs beads

and between the two c1 beads, or of the form c1, . . . , cs−1, e1, cs−1, . . . , c1, e2, where s = n
2d − 1

(with an axis of symmetry going through beads e1 and e2).

Now consider a bracelet that consists of d copies of the bracelet of length n/d described

above. It obviously has length n and consists of k white beads and n− k black beads. Starting

from one copy, number the copies in one direction 1, 2, . . . , d.

If the bracelet of length n/d is of the form c1, . . . , cs, cs, . . . , c1, then the bracelet of length

n has an axis of symmetry going between the two consecutive cs beads of copy 1 and the two
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consecutive cs beads of copy d
2 + 1 if d is even, or going between the two consecutive cs beads of

copy 1 and the two consecutive c1 beads of copies d+1
2 and d+3

2 if d is odd.

If the bracelet of length n/d is of the form c1, . . . , cs−1, e1, cs−1, . . . , c1, e2, then the bracelet

of length n has an axis of symmetry going through e1 of copy 1 and e1 of copy d
2 +1 (and another

one going through e2 of copy 1 and e2 of copy d
2 + 1) if d is even; or has an axis of symmetry

going through e1 in copy 1 and through e2 of copy d+1
2 if d is odd.

We may also consider the converse: start with a bracelet of length n (with n/d even) that

has a reflection symmetry, has period d, and consists of k white beads and (n− k)/d beads. We

may prove (using a similar argument as above) that it can be generated by a bracelet of length

n/d that has a reflection symmetry and consists of k/d white beads and (n− k)/d black beads.

Again, we omit the details.

Conclusion: Thus, given n, k, d ∈ Z>0 with d| gcd(n, k), we may establish a one-to-one

correspondence between the collection of bracelets of length n and period d which have k white

beads and n− k black beads and a reflection symmetry and the collection of aperiodic bracelets

of length n/d which have k/d white beads and (n−k)/d black beads and a reflection symmetry.

This proves that ak(n; d) = b k
d

(
n
d

)
.

2 Some formulas for the quantities ak(n) and bk(n)

Recall that ak(n) is the number of chiral bracelets of length n that have k white beads and n−k
beads. Also, bk(n) is the number of aperiodic chiral bracelets of length n that have k white

beads and n− k beads. We know from equations (3) that

ak(n) =
∑

d| gcd(n,k)

b k
d

(n
d

)
and bk(n) =

∑
d| gcd(n,k)

µ(d) a k
d

(n
d

)
(k, n ∈ Z>0). (5)

We also have ak(n) = 0 = bk(n) when 0 < n < k.

The following formulas are implicit in the comments of John P. McSorley for sequence

A180472 and the paper by McSorley and Shoen [2]. For 1 ≤ k ≤ n,

ak(n) = −1

2

(⌊n
2

⌋
− (k mod 2)[1− (n mod 2)]⌊

k
2

⌋ )
+

1

2n

∑
d| gcd(n,k)

φ(d)

(n
d
k
d

)
(6)

= −1

2

(⌊n
2

⌋
− (k mod 2)[1− (n mod 2)]⌊

k
2

⌋ )
+

1

2k

∑
d| gcd(n,k)

φ(d)

(n
d − 1
k
d − 1

)
. (7)

Obviously, equation (6) follows easily from equation (7). Given the results of this note, the

easiest way to prove equation (7) is to use Herbert Kociemba’s formula (1).
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Proof of equation (7) from equation (1): Let

Ak(n) :=
∑

d| gcd(n,k)

φ(d)

(n
d − 1
k
d − 1

)
and Bk(n) :=

(⌊n
2

⌋
− (k mod 2)[1− (n mod 2)]⌊

k
2

⌋ )
.

Equation (7) would follow easily from equation (1) if we establish that, for k ≥ 1,

∞∑
n=1

Ak(n)xn = xk
∑
d|k

φ(d)

(1− xd)k/d
and

∞∑
n=1

Bk(n)xn =
(1 + x)xk

(1− x2)b
k
2
+1c . (8)

It is well-known that, for any real t > 0 and |x| < 1, we have

(1− x)−t =
∞∑
s=0

(
−t
s

)
(−x)s =

∞∑
s=0

(
t+ s− 1

s

)
xs. (9)

We then have

∞∑
n=1

Ak(n)xn =

∞∑
n=1

∑
d| gcd(n,k)

φ(d)

(n
d − 1
k
d − 1

)
xn (let n = md)

=
∑
d|k

φ(d)
∞∑
m=1

(
m− 1
k
d − 1

)
xmd

=
∑
d|k

φ(d)
∞∑

m=k/d

(
m− 1
k
d − 1

)
(xd)m (let s = m− (k/d))

=
∑
d|k

φ(d)
∞∑
s=0

(
s+ k

d − 1

s

)
(xd)s+(k/d) = xk

∑
d|k

φ(d)

(1− xd)k/d
.

This proves the first equation in (8).

To prove the second equation in (8), we consider two cases.

Case 1: k is even. Say k = 2ν, where ν ∈ Z>0. Then

∞∑
n=1

Bk(n)xn =
∞∑
n=1

(⌊n
2

⌋
ν

)
xn =

∞∑
m=1

(
m

ν

)
x2m +

∞∑
m=0

(
m

ν

)
x2m+1

=

∞∑
m=ν

(
m

ν

)
x2m +

∞∑
m=ν

(
m

ν

)
x2m+1 (let s = m− ν)

= (1 + x)
∞∑
s=0

(
(ν + 1) + s− 1

s

)
(x2)s+ν

=
x2ν(1 + x)

(1− x2)ν+1
=

(1 + x)xk

(1− x2)b
k
2
+1c .
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Case 2: k is odd. Say k = 2ν + 1, where ν ∈ Z≥0. Then

∞∑
n=1

Bk(n)xn =
∞∑
n=1

(⌊n
2

⌋
− 1 + (n mod 2)

ν

)
xn

=

∞∑
m=1

(
m− 1

ν

)
x2m +

∞∑
m=0

(
m

ν

)
x2m+1

=
∞∑

m=ν+1

(
m− 1

ν

)
x2m +

∞∑
m=ν

(
m

ν

)
x2m+1.

We let s = m− ν − 1 in the first sum and s = m− ν in the second one. We thus get

∞∑
n=1

Bk(n)xn =
∞∑
s=0

(
s+ ν

ν

)
x2s+2ν+2 +

∞∑
s=0

(
s+ ν

ν

)
x2s+2ν+1

= x2ν+1(x+ 1)
∞∑
s=0

(
(ν + 1) + s− 1

s

)
(x2)s

=
x2ν+1(1 + x)

(1− x2)ν+1
=

(1 + x)xk

(1− x2)b
k
2
+1c .

This completes the proof of the second equation in (8).

Since we have two formulas for ak(n), given by equations (6) and (7), we may easily get a

formula for bk(n), using the second equation in (5). But this would be a formula that is too

complicated (and we do not even type it down in this note!). In Section 4 of this note, we prove

a simpler formula for bk(n).

3 The second formula for the g.f. of the number of aperiodic

chiral bracelets of two colors

Using equations (1) and (2) from Section 1, we may establish another formula for the generating

function of the number of aperiodic bracelets of length n that have no reflection symmetry and

consist of k white beads and n− k black beads:

gk(x) =
∞∑
n=1

bk(n)xn =
xk

2k

∑
d|k

µ(d)

(
1

(1− xd)k/d
− k(1 + xd)

(1− x2d)b
k
2d

+1c

)
. (10)
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Proof of equation (10): Using equations (1) and (2), we get

gk(x) =
∑
d|k

µ(d) f k
d
(xd)

=
∑
d|k

µ(d)
(xd)

k
d

2

d
k

∑
m|(k/d)

φ(m)

(1− xdm)k/(dm)
− 1 + xd

(1− x2d)b
k
2d

+1c


=
xk

2k

∑
d|k

dµ(d)
∑

m|(k/d)

φ(m)

(1− xdm)k/(dm)
− xk

2k

∑
d|k

µ(d)
k(1 + xd))

(1− x2d)b
k
2d

+1c .

To finish the proof of equation (10), we need to show that∑
d|k

dµ(d)
∑

m|(k/d)

φ(m)

(1− xdm)k/(dm)
=
∑
d|k

µ(d)

(1− xd)k/d
. (11)

Using the associative property of Dirichlet convolutions, we get∑
d|k

dµ(d)
∑

m|(k/d)

φ(m)

(1− ydm/k)k/(dm)
=
∑
d|k

dµ(d)
∑

m|(k/d)

φ(m)

(1− ym/(k/d))(k/d)/m

=
∑
d|k

∑
m|d

mµ(m)φ

(
d

m

) 1

(1− yd/k)k/d
. (12)

We claim that ∑
m|d

mµ(m)φ

(
d

m

)
= µ(d) for all d ∈ Z>0. (13)

Indeed, it is well-known that

φ(d)

d
=
∑
m|d

µ(m)

m
for all d ∈ Z>0,

from which, by Möbius inversion, we get∑
m|d

µ(m)
φ(d/m)

d/m
=
µ(d)

d
for all d ∈ Z>0.

The last equality is equivalent to equation (13).

From equations (12) and (13) above, we get∑
d|k

dµ(d)
∑

m|(k/d)

φ(m)

(1− ydm/k)k/(dm)
=
∑
d|k

µ(d)

(1− yd/k)k/d
.

Letting y = xk in the above equation, we get equation (11), and this finishes the proof of

equation (10).
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4 A simpler formula for bk(n)

At the end of Section 2 of this note, we found a formula for bk(n), which is the number of

aperiodic chiral bracelets of length n that have k white beads and n − k black beads. The

formula, however, was too complicated to even type it down. Thus, here, we give a simpler one.

For n, k, d ∈ Z>0 with d| gcd(n, k), let

c(n, k, d) :=
n

d
+

(−1)
k
d − 1

2
.

Then

bk(n) =
1

2k

∑
d| gcd(n,k)

µ(d)

(n
d − 1
k
d − 1

)
− k
(⌊ c(n,k,d)

2

⌋
⌊
k
2d

⌋ ) . (14)

Since
(
α
β

)
= 0 for α, β ∈ Z≥0 with α < β, the above formula is true even when 0 < n < k, in

which case, we trivially have bk(n) = 0.

Proof of equation (14) from equation (10): Let

Ck(n) :=
∑

d| gcd(n,k)

µ(d)

(n
d − 1
k
d − 1

)
and Dk(n) :=

∑
d| gcd(n,k)

µ(d)

(⌊ c(n,k,d)
2

⌋
⌊
k
2d

⌋ )
.

Equation (14) would follow easily from equation (10) if we establish that, for k ≥ 1,

∞∑
n=1

Ck(n)xn = xk
∑
d|k

µ(d)

(1− xd)k/d
and

∞∑
n=1

Dk(n)xn = xk
∑
d|k

µ(d)(1 + xd)

(1− x2d)b
k
2d

+1c . (15)

Because of equations (9), we have

∞∑
n=1

Ck(n)xn =
∞∑
n=1

∑
d| gcd(n,k)

µ(d)

(n
d − 1
k
d − 1

)
xn (let n = md)

=
∑
d|k

µ(d)

∞∑
m=1

(
m− 1
k
d − 1

)
xmd

=
∑
d|k

µ(d)

∞∑
m=k/d

(
m− 1
k
d − 1

)
(xd)m (let s = m− (k/d))

=
∑
d|k

µ(d)
∞∑
s=0

(
s+ k

d − 1

s

)
(xd)s+(k/d) = xk

∑
d|k

µ(d)

(1− xd)k/d
.

This proves the first equation in (15).
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To prove the second equation in (15), notice first that

∞∑
n=1

Dk(n)xn =
∞∑
n=1

∑
d| gcd(n,k)

µ(d)

(⌊ c(n,k,d)
2

⌋
⌊
k
2d

⌋ )
xn =

∑
d|k

µ(d)E(k, d, x),

where

E(k, d, x) :=
∞∑
m=1

(⌊m+
(−1)k/d−1

2
2

⌋
⌊
k
2d

⌋ )
xmd

for all k, d ∈ Z>0 with d|k. If we prove that

E(k, d, x) =
xk(1 + xd)

(1− x2d)b
k
2d

+1c for d|k, (16)

then the second equation in (15) would follow immediately.

We consider two cases. In each case, we use equations (9).

Case 1: k/d is even. Then

E(k, d, x) =
∞∑
m=1

(⌊m
2

⌋
k
2d

)
xmd =

∞∑
s=1

(
s
k
2d

)
x2sd +

∞∑
s=0

(
s
k
2d

)
x2sd+d

=
∞∑

s=k/(2d)

(
s
k
2d

)
x2sd +

∞∑
s=k/(2d)

(
s
k
2d

)
x2sd+d (let r = s− k

2d)

= (1 + xd)

∞∑
r=0

(
r + k

2d
k
2d

)(
x2d
)r+ k

2d

= xk(1 + xd)

∞∑
r=0

(( k
2d + 1

)
+ r − 1

r

)(
x2d
)r

=
xk(1 + xd)

(1− x2d)
k
2d

+1
=

xk(1 + xd)

(1− x2d)b
k
2d

+1c .

Case 2: k/d is odd. Then

E(k, d, x) =

∞∑
m=1

( ⌊
m−1
2

⌋
1
2

(
k
d − 1

))xmd
=

∞∑
s=1

(
s− 1

1
2

(
k
d − 1

))x2sd +
∞∑
s=0

(
s

1
2

(
k
d − 1

))x2sd+d
=

∞∑
s= 1

2( k
d
+1)

(
s− 1

1
2

(
k
d − 1

))x2sd +
∞∑

s= 1
2( k

d
−1)

(
s

1
2

(
k
d − 1

))x2sd+d.
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We let r = s− 1
2

(
k
d + 1

)
in the first sum and r = s− 1

2

(
k
d − 1

)
in the second one. We thus get

E(k, d, x) =

∞∑
r=0

(
r + 1

2

(
k
d − 1

)
1
2

(
k
d − 1

) )
x2rd+k+d +

∞∑
r=0

(
r + 1

2

(
k
d − 1

)
1
2

(
k
d − 1

) )
x2rd+k.

= xk(1 + xd)
∞∑
r=0

(1
2

(
k
d + 1

)
+ r − 1

r

)
(x2d)r

=
xk(1 + xd)

(1− x2d)
1
2( k

d
+1)

=
xk(1 + xd)

(1− x2d)b
k
2d

+1c .

Putting both cases together allows us to prove equation (16), from which the second equation

in (15) follows immediately.

5 Formulas for the total number of chiral bracelets of two colors

Let a(n) be the total number of chiral bracelets (bracelets with no reflection symmetry) of two

colors, and let b(n) be the total number of aperiodic chiral braceletes of two colors. In other

words,

a(n) =
n∑
k=1

ak(n) and b(n) =
n∑
k=1

bk(n).

Let also f(x) and g(x) be their corresponding generating functions; that is,

f(x) =

∞∑
n=1

a(n)xn and g(x) =

∞∑
n=1

b(n)xn.

Using the results of the previous sections, we shall prove in this section that

a(n) = −2b
n
2
−3c(7− (−1)n) +

1

2n

∑
d|n

φ(d)2
n
d ; (17)

b(n) =
1

2

∑
d|n

µ(d)

(
2

n
d

n
− 2b

n
2d
−2c

(
7− (−1)

n
d

))
; (18)

f(x) =
1

2

(
−x(2 + 3x)

1− 2x2
−
∞∑
m=1

φ(m)

m
log(1− 2xm)

)
; (19)

g(x) =
1

2

∞∑
m=1

µ(m)

(
−x

m(2 + 3xm)

1− 2x2m
− 1

m
log(1− 2xm)

)
. (20)

Formulas (17) and (18) above are special cases of more general formulas due to Robert A. Russell

that appear in the documentation of sequences A059076 and A032239, respectively. In addition,

formulas (19) and (20) above are special cases of more general formulas due to Herbert Kociemba

that appear in the documentation of sequences A059076 and A032239, respectively.
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Proof of equation (17): From equation (6), we get

a(n) =

n∑
k=1

ak(n) =

n∑
k=1

(−α(n, k) + β(n, k)),

where

α(n, k) :=
1

2

(⌊n
2

⌋
− (k mod 2)[1− (n mod 2)]⌊

k
2

⌋ )
and β(n, k) :=

1

2n

∑
d| gcd(n,k)

φ(d)

(n
d
k
d

)
.

To finish the proof of equation (17), we need to show that

n∑
k=1

α(n, k) = 2b
n
2
−3c(7− (−1)n)− 1

2
and

n∑
k=1

β(n, k) =
1

2n

∑
d|n

φ(d)2n/d − 1

2
. (21)

To prove the first equation in (21), we consider two cases. When n is even, say n = 2v, where

v ∈ Z>0, we have

n∑
k=1

α(n, k) =
1

2

2v∑
k=1

(
v − (k mod 2)⌊

k
2

⌋ )

=
1

2

(
v∑
`=1

(
v

`

)
+

v−1∑
`=0

(
v − 1

`

))

= 3 · 2v−2 − 1

2
= 2b

n
2
−3c(7− (−1)n)− 1

2
.

When n is odd, say n = 2v + 1, where v ∈ Z≥0, we have

n∑
k=1

α(n, k) =
1

2

2v+1∑
k=1

(
v⌊
k
2

⌋)

=
1

2

(
v∑
`=1

(
v

`

)
+

v∑
`=0

(
v

`

))

= 2v − 1

2
= 2b

n
2
−3c(7− (−1)n)− 1

2
.

Finally, we prove the second equation in (21):

n∑
k=1

β(n, k) =

n∑
k=1

1

2n

∑
d| gcd(n,k)

φ(d)

(n
d
k
d

)

=
1

2n

∑
d|n

φ(d)

n/d∑
m=1

( n
d

m

)
=

1

2n

∑
d|n

φ(d)(2n/d − 1) =
1

2n

∑
d|n

φ(d)2n/d − 1

2
.
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This completes the proof of equation (17).

Proof of equation (18): From equation (14), we get

b(n) =

n∑
k=1

bk(n) =

n∑
k=1

(γ(n, k)− δ(n, k)), (22)

where

γ(n, k) :=
1

2k

∑
d| gcd(n,k)

µ(d)

(n
d − 1
k
d − 1

)
=

1

2n

∑
d| gcd(n,k)

µ(d)

(n
d
k
d

)
and

δ(n, k) :=
1

2

∑
d| gcd(n,k)

µ(d)

(⌊ c(n,k,d)
2

⌋
⌊
k
2d

⌋ )
,

where

c(n, k, d) :=
n

d
+

(−1)
k
d − 1

2
for d| gcd(n, k).

To prove equation (18), we first need to establish that

n∑
k=1

γ(n, k) =
1

2n

∑
d|n

µ(d)(2n/d − 1) (23)

and
n∑
k=1

δ(n, k) =
1

2

∑
d|n

µ(d)
(
−1 + 2b

n
2d
−2c(7− (−1)n/d)

)
. (24)

We have
n∑
k=1

γ(n, k) =
1

2n

∑
d|n

µ(d)

n/d∑
m=1

( n
d

m

)
=

1

2n

∑
d|n

µ(d)(2n/d − 1),

which proves equation (23).

To prove equation (24), we first notice that

n∑
k=1

δ(n, k) =
1

2

n∑
k=1

µ(d)
∑

d| gcd(n,k)

(⌊ c(n,k,d)
2

⌋
⌊
k
2d

⌋ )

=
1

2

n∑
k=1

µ(d)
∑

d| gcd(n,k)

(⌊1
2

(
n
d + (−1)k/d−1

2

)⌋
⌊
k
2d

⌋ )

=
1

2

∑
d|n

µ(d)

n/d∑
m=1

(⌊1
2

(
n
d + (−1)m−1

2

)⌋
⌊
m
2

⌋ )
. (25)
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Because of equation (25), to complete the proof of equation (24), we need to show that

n/d∑
m=1

(⌊1
2

(
n
d + (−1)m−1

2

)⌋
⌊
m
2

⌋ )
= −1 + 2b

n
2d
−2c(7− (−1)n/d) for all n, d ∈ Z>0 with d|n.

We consider two cases depending on the parity of n/d.

Case 1: n/d is even. In this case,

n/d∑
m=1

(⌊1
2

(
n
d + (−1)m−1

2

)⌋
⌊
m
2

⌋ )
=

n
2d∑
`=1

( n
2d

`

)
+

n
2d
−1∑

`=0

( n
2d − 1

`

)
= 3 · 2

n
2d
−1 − 1 = −1 + 2b

n
2d
−2c(7− (−1)n/d).

Case 2: n/d is odd. In this case,

n/d∑
m=1

(⌊1
2

(
n
d + (−1)m−1

2

)⌋
⌊
m
2

⌋ )
=

n
2d
− 1

2∑
`=1

( n
2d −

1
2

`

)
+

n
2d
− 1

2∑
`=0

( n
2d −

1
2

`

)
= 2

n
2d

+ 1
2 − 1 = −1 + 2b

n
2d
−2c(7− (−1)n/d).

This completes the proof of equation (24).

If n > 1, it is well-known that
∑

d|n µ(d) = 0, in which case, equations (22), (23), and (24)

immediately yield (18).

If n = 1, then

γ(1, 1) =
1

2
= δ(1, 1)⇒ b(1) = 0,

and we see that equation (18) is trivially satisfied. This completes the proof of equation (18).

Proof of equation (19): It suffices to prove the following two identities:

∞∑
n=1

2b
n
2
−3c(7− (−1)n)xn =

x(2 + 3x)

2(1− 2x2)
and (26)

∞∑
n=1

1

2n

∑
d|n

φ(d)2n/dxn = −1

2

∞∑
d=1

φ(d)

d
log(1− 2xd). (27)

We have

∞∑
n=1

2b
n
2
−3c(7− (−1)n)xn =

∞∑
m=1

2m−3(7− 1)x2m +
∞∑
m=0

2m−3(7 + 1)x2m+1

=
3x2

2(1− 2x2)
+

x

1− 2x2
=

x(2 + 3x)

2(1− 2x2)
.
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This proves equation (26). We also have

∞∑
n=1

1

2n

∑
d|n

φ(d)2n/dxn =
1

2

∞∑
d=1

φ(d)

d

∞∑
m=1

(2xd)m

m
= −1

2

∞∑
r=1

φ(d)

d
log(1− 2xd).

The proves equation (27), and the proof of equation (19) is complete.

Proof of equation (20): It suffices to prove the following two identities:

∞∑
n=1

∑
d|n

µ(d)2b
n
2d
−2c

(
7− (−1)

n
d

)
xn =

∞∑
m=1

µ(m)
xm(2 + 3xm)

1− 2x2m
and (28)

∞∑
n=1

1

2n

∑
d|n

µ(d)2n/dxn = −1

2

∞∑
r=1

µ(d)

d
log(1− 2xd). (29)

We have

∞∑
n=1

∑
d|n

µ(d)2b
n
2d
−2c

(
7− (−1)

n
d

)
xn =

∞∑
d=1

µ(d)
∞∑
m=1

2b
m
2
−2c (7− (−1)m) (xd)m

=
∞∑
d=1

µ(d)
xd(2 + 3xd)

1− 2x2d
(from equation (26)).

This proves equation (28). The proof of equation (29) is similar to the proof of equation (27)

above, and thus it is omitted. This completes the proof of equation (20).

6 Final remarks

It can be easily proved that, for k ∈ Z>0,

[ak(n) = bk(n) for all n ∈ Z>0]⇐⇒ [k ∈ {1, 4} or k is a positive prime].

We have

fk(x) = gk(x) = 0 for k ∈ {1, 2}; f4(x) = g4(x) =
x7

(1− x)4(1 + x)2(1 + x2)
;

and

fk(x) = gk(x) =
xk

2

(
1

k(1− x)k
+

k − 1

k(1− xk)
− (1 + x)

(1− x2)
k+1
2

)
for k odd prime ≥ 3.

Finally, we remark (one more time) that Bower [1] defined the DHK (bracelet, identity,

unlabeled) transform of a sequence (c(n) : n ≥ 1) as the sum of the DHKk transforms of the

15



sequence (c(n) : n ≥ 1) for k from 1 to n. (In his notation, k stands for the number of boxes

that contain a total of n balls.)

Because he gave special definitions to the DHK1 and DHK2 transforms (different from the

definition of the DHKk transform of sequence (c(n) : n ≥ 1) for k > 2), we see that the values

of b(1) and b(2) (which are both zero!) do not agree with A032239(1) and A032239(2) (which

are 2 and 1, respectively).
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