OFFSET
2,2
COMMENTS
This irregular triangle T(n, k) gives the number of multiples of number k, larger than k and not exceeding n, for k = 1, 2, ..., floor(n/2), for n >= 2. See A348389 for the array of these multiples.
The length of row n is floor(n/2) = A004526(n), for n >= 2.
The row sums give A002541(n). See the formula given there by Wesley Ivan Hurt, May 08 2016.
The columns give the k-fold repeated positive integers k, for k >= 1.
LINKS
Karl-Heinz Hofmann, Table of n, a(n) for n = 2..10101
FORMULA
T(n, k) = floor((n-k)/k), for k = 1, 2, ..., floor(n/2) and n >= 2.
G.f. of column k: G(k, x) = x^(2*k)/((1 - x)*(1 - x^k)).
EXAMPLE
The irregular triangle T(n, k) begins:
n\k 1 2 3 4 5 6 7 8 9 10 ...
------------------------------
2: 1
3: 2
4: 3 1
5: 4 1
6: 5 2 1
7: 6 2 1
8: 7 3 1 1
9: 8 3 2 1
10: 9 4 2 1 1
11: 10 4 2 1 1
12: 11 5 3 2 1 1
13: 12 5 3 2 1 1
14: 13 6 3 2 1 1 1
15: 14 6 4 2 2 1 1
16: 15 7 4 3 2 1 1 1
17: 16 7 4 3 2 1 1 1
18: 17 8 5 3 2 2 1 1 1
19: 18 8 5 3 2 2 1 1 1
20: 19 9 5 4 3 2 1 1 1 1
...
MATHEMATICA
T[n_, k_] := Floor[(n - k)/k]; Table[T[n, k], {n, 2, 20}, {k, 1, Floor[n/2]}] // Flatten (* Amiram Eldar, Nov 02 2021 *)
PROG
(Python)
def A348388row(n): return [(n - k) // k for k in range(1, 1 + n // 2)]
for n in range(2, 21): print(A348388row(n)) # Peter Luschny, Nov 05 2021
CROSSREFS
KEYWORD
nonn,easy,tabf
AUTHOR
Wolfdieter Lang, Oct 31 2021
STATUS
approved