login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A348388
Irregular triangle read by rows: T(n, k) = floor((n-k)/k), for k = 1, 2, ..., floor(n/2) and n >= 2.
2
1, 2, 3, 1, 4, 1, 5, 2, 1, 6, 2, 1, 7, 3, 1, 1, 8, 3, 2, 1, 9, 4, 2, 1, 1, 10, 4, 2, 1, 1, 11, 5, 3, 2, 1, 1, 12, 5, 3, 2, 1, 1, 13, 6, 3, 2, 1, 1, 1, 14, 6, 4, 2, 2, 1, 1, 15, 7, 4, 3, 2, 1, 1, 1, 16, 7, 4, 3, 2, 1, 1, 1, 17, 8, 5, 3, 2, 2, 1, 1, 1, 18, 8, 5, 3, 2, 2, 1, 1, 1, 19, 9, 5, 4, 3, 2, 1, 1, 1, 1
OFFSET
2,2
COMMENTS
This irregular triangle T(n, k) gives the number of multiples of number k, larger than k and not exceeding n, for k = 1, 2, ..., floor(n/2), for n >= 2. See A348389 for the array of these multiples.
The length of row n is floor(n/2) = A004526(n), for n >= 2.
The row sums give A002541(n). See the formula given there by Wesley Ivan Hurt, May 08 2016.
The columns give the k-fold repeated positive integers k, for k >= 1.
LINKS
FORMULA
T(n, k) = floor((n-k)/k), for k = 1, 2, ..., floor(n/2) and n >= 2.
G.f. of column k: G(k, x) = x^(2*k)/((1 - x)*(1 - x^k)).
EXAMPLE
The irregular triangle T(n, k) begins:
n\k 1 2 3 4 5 6 7 8 9 10 ...
------------------------------
2: 1
3: 2
4: 3 1
5: 4 1
6: 5 2 1
7: 6 2 1
8: 7 3 1 1
9: 8 3 2 1
10: 9 4 2 1 1
11: 10 4 2 1 1
12: 11 5 3 2 1 1
13: 12 5 3 2 1 1
14: 13 6 3 2 1 1 1
15: 14 6 4 2 2 1 1
16: 15 7 4 3 2 1 1 1
17: 16 7 4 3 2 1 1 1
18: 17 8 5 3 2 2 1 1 1
19: 18 8 5 3 2 2 1 1 1
20: 19 9 5 4 3 2 1 1 1 1
...
MATHEMATICA
T[n_, k_] := Floor[(n - k)/k]; Table[T[n, k], {n, 2, 20}, {k, 1, Floor[n/2]}] // Flatten (* Amiram Eldar, Nov 02 2021 *)
PROG
(Python)
def A348388row(n): return [(n - k) // k for k in range(1, 1 + n // 2)]
for n in range(2, 21): print(A348388row(n)) # Peter Luschny, Nov 05 2021
CROSSREFS
Columns k (with varying offsets): A000027, A004526, A008620, A008621, A002266, A097992, ...
Sequence in context: A277230 A218534 A241773 * A205790 A279820 A235791
KEYWORD
nonn,easy,tabf
AUTHOR
Wolfdieter Lang, Oct 31 2021
STATUS
approved