Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 Nov 06 2021 11:08:05
%S 1,2,3,1,4,1,5,2,1,6,2,1,7,3,1,1,8,3,2,1,9,4,2,1,1,10,4,2,1,1,11,5,3,
%T 2,1,1,12,5,3,2,1,1,13,6,3,2,1,1,1,14,6,4,2,2,1,1,15,7,4,3,2,1,1,1,16,
%U 7,4,3,2,1,1,1,17,8,5,3,2,2,1,1,1,18,8,5,3,2,2,1,1,1,19,9,5,4,3,2,1,1,1,1
%N Irregular triangle read by rows: T(n, k) = floor((n-k)/k), for k = 1, 2, ..., floor(n/2) and n >= 2.
%C This irregular triangle T(n, k) gives the number of multiples of number k, larger than k and not exceeding n, for k = 1, 2, ..., floor(n/2), for n >= 2. See A348389 for the array of these multiples.
%C The length of row n is floor(n/2) = A004526(n), for n >= 2.
%C The row sums give A002541(n). See the formula given there by _Wesley Ivan Hurt_, May 08 2016.
%C The columns give the k-fold repeated positive integers k, for k >= 1.
%H Karl-Heinz Hofmann, <a href="/A348388/b348388.txt">Table of n, a(n) for n = 2..10101</a>
%F T(n, k) = floor((n-k)/k), for k = 1, 2, ..., floor(n/2) and n >= 2.
%F G.f. of column k: G(k, x) = x^(2*k)/((1 - x)*(1 - x^k)).
%e The irregular triangle T(n, k) begins:
%e n\k 1 2 3 4 5 6 7 8 9 10 ...
%e ------------------------------
%e 2: 1
%e 3: 2
%e 4: 3 1
%e 5: 4 1
%e 6: 5 2 1
%e 7: 6 2 1
%e 8: 7 3 1 1
%e 9: 8 3 2 1
%e 10: 9 4 2 1 1
%e 11: 10 4 2 1 1
%e 12: 11 5 3 2 1 1
%e 13: 12 5 3 2 1 1
%e 14: 13 6 3 2 1 1 1
%e 15: 14 6 4 2 2 1 1
%e 16: 15 7 4 3 2 1 1 1
%e 17: 16 7 4 3 2 1 1 1
%e 18: 17 8 5 3 2 2 1 1 1
%e 19: 18 8 5 3 2 2 1 1 1
%e 20: 19 9 5 4 3 2 1 1 1 1
%e ...
%t T[n_, k_] := Floor[(n - k)/k]; Table[T[n, k], {n, 2, 20}, {k, 1, Floor[n/2]}] // Flatten (* _Amiram Eldar_, Nov 02 2021 *)
%o (Python)
%o def A348388row(n): return [(n - k) // k for k in range(1, 1 + n // 2)]
%o for n in range(2, 21): print(A348388row(n)) # _Peter Luschny_, Nov 05 2021
%Y Columns k (with varying offsets): A000027, A004526, A008620, A008621, A002266, A097992, ...
%Y Cf. A002541, A004526, A010766, A348389.
%K nonn,easy,tabf
%O 2,2
%A _Wolfdieter Lang_, Oct 31 2021