The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A348390 Irregular triangle read by rows: for n >= 2 the row members a(n, m) give the proper divisors of k, followed by the multiples of k larger than k and not exceeding n, for k = 1, 2, ..., n. 3
2, 1, 2, 3, 1, 1, 2, 3, 4, 1, 4, 1, 1, 2, 2, 3, 4, 5, 1, 4, 1, 1, 2, 1, 2, 3, 4, 5, 6, 1, 4, 6, 1, 6, 1, 2, 1, 1, 2, 3, 2, 3, 4, 5, 6, 7, 1, 4, 6, 1, 6, 1, 2, 1, 1, 2, 3, 1, 2, 3, 4, 5, 6, 7, 8, 1, 4, 6, 8, 1, 6, 1, 2, 8, 1, 1, 2, 3, 1, 1, 2, 4 (list; graph; refs; listen; history; text; internal format)
OFFSET
2,1
COMMENTS
The length of row n is 2*A002541(n), for n >= 2.
The sum of row n is A348391(n). The sum of the proper divisors of row n is A153485(n). The sum of the multiples in row n is A348392(n). Hence, A348391(n) = A153485(n) + A348392(n).
For k = 1 the proper divisor set is empty, and for k > floor(n/2) the set of multiples is empty.
LINKS
FORMULA
For n >= 2 row n gives the sequence of the sequence d(n, k) of proper divisors of k (A027751(k)) followed by the sequences m(n, k) of the multiples of k, larger than k and not exceeding n (A348389), for k = 1, 2, 3, ..., n.
EXAMPLE
The irregular triangle a(n, m), m = 1, 2, ..., 2*A002541(n) begins:
(members for k = 1, 2, ..., n are separated by a vertical bar, and the proper divisors and multiples are separated by a comma)
n\m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 ...
-----------------------------------------------------------------------------------
2: 2|1
3: 2 3|1|1
4: 2 3 4|1,4|1|1 2
5: 2 3 4 5|1,4|1|1 2| 1
6: 2 3 4 5 6|1,4 6| 1, 6| 1 2| 1| 1 2 3
7: 2 3 4 5 6 7|1,4 6| 1, 6| 1 2| 1| 1 2 3| 1
8: 3 4 5 6 7 8|1,4 6 8| 1 ,6| 1 2 ,8| 1| 1 2 3| 1| 1 2 4
9: 2 3 4 5 6 7 8 9| 1, 4 6 8| 1, 6 9| 1 2, 8| 1| 1 2 3| 1| 1 2 4| 1 3
...
n = 10: 2 3 4 5 6 7 8 9 10 | 1, 4 6 8 10 | 1, 6 9 | 1 2, 8 | 1, 10 | 1 2 3 | 1 | 1 2 4 | 1 3 | 1 2 5
-----------------------------------------------------------------------------------
n = 4: d(4, 1) = {}, m(4, 1) = {2, 3, 4}; d(4, 2) = {1}, m(4, 2) = {4}; d(4, 3) = {1}, m(4, 3) = {}; d(4, 4) = {1, 2}, m(4, 4) = {}, This explains row n = 4.
MATHEMATICA
nrows=10; Table[Flatten[Table[Join[Most[Divisors[k]], Range[2k, n, k]], {k, n}]], {n, 2, nrows+1}] (* Paolo Xausa, Nov 23 2021 *)
CROSSREFS
Sequence in context: A277822 A327616 A181631 * A133674 A348245 A215026
KEYWORD
nonn,easy,tabf
AUTHOR
Wolfdieter Lang, Nov 07 2021
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 29 21:02 EDT 2024. Contains 372952 sequences. (Running on oeis4.)