login
A348049
a(n) = A003959(n) / gcd(sigma(n), A003959(n)), where A003959 is multiplicative with a(p^e) = (p+1)^e and sigma is the sum of divisors function.
4
1, 1, 1, 9, 1, 1, 1, 9, 16, 1, 1, 9, 1, 1, 1, 81, 1, 16, 1, 9, 1, 1, 1, 9, 36, 1, 8, 9, 1, 1, 1, 27, 1, 1, 1, 144, 1, 1, 1, 9, 1, 1, 1, 9, 16, 1, 1, 81, 64, 36, 1, 9, 1, 8, 1, 9, 1, 1, 1, 9, 1, 1, 16, 729, 1, 1, 1, 9, 1, 1, 1, 144, 1, 1, 36, 9, 1, 1, 1, 81, 256, 1, 1, 9, 1, 1, 1, 9, 1, 16, 1, 9, 1, 1, 1, 27, 1, 64
OFFSET
1,4
COMMENTS
Not multiplicative. For example, a(196) = 192 != a(4) * a(49).
FORMULA
a(n) = A003959(n) / A348047(n) = A003959(n) / gcd(A000203(n), A003959(n)).
MATHEMATICA
f[p_, e_] := (p + 1)^e; a[1] = 1; a[n_] := (m = Times @@ f @@@ FactorInteger[n]) / GCD[m, DivisorSigma[1, n]]; Array[a, 100] (* Amiram Eldar, Oct 21 2021 *)
PROG
(PARI)
A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
A348049(n) = { my(u=A003959(n)); (u/gcd(u, sigma(n))); };
CROSSREFS
Cf. A000203, A003959, A005117 (positions of 1's), A348029, A348047, A348048.
Cf. also A344697.
Sequence in context: A010164 A006084 A059928 * A293724 A283989 A361794
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 21 2021
STATUS
approved