login
A348048
a(n) = sigma(n) / gcd(sigma(n), A003959(n)), where A003959 is multiplicative with a(p^e) = (p+1)^e and sigma is the sum of divisors function.
5
1, 1, 1, 7, 1, 1, 1, 5, 13, 1, 1, 7, 1, 1, 1, 31, 1, 13, 1, 7, 1, 1, 1, 5, 31, 1, 5, 7, 1, 1, 1, 7, 1, 1, 1, 91, 1, 1, 1, 5, 1, 1, 1, 7, 13, 1, 1, 31, 57, 31, 1, 7, 1, 5, 1, 5, 1, 1, 1, 7, 1, 1, 13, 127, 1, 1, 1, 7, 1, 1, 1, 65, 1, 1, 31, 7, 1, 1, 1, 31, 121, 1, 1, 7, 1, 1, 1, 5, 1, 13, 1, 7, 1, 1, 1, 7, 1, 57, 13
OFFSET
1,4
COMMENTS
Not multiplicative. For example, a(196) = 133 != a(4) * a(49).
FORMULA
a(n) = A000203(n) / A348047(n) = A000203(n) / gcd(A000203(n), A003959(n)).
MATHEMATICA
f[p_, e_] := (p + 1)^e; a[1] = 1; a[n_] := (s = DivisorSigma[1, n]) / GCD[s, Times @@ f @@@ FactorInteger[n]]; Array[a, 100] (* Amiram Eldar, Oct 21 2021 *)
PROG
(PARI)
A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
A348048(n) = { my(u=sigma(n)); (u/gcd(u, A003959(n))); };
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 21 2021
STATUS
approved