login
A347468
Numbers k such that floor(k*sqrt(3)) = floor(h*sqrt(2)) for some h.
4
1, 3, 5, 7, 9, 11, 13, 14, 15, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 35, 36, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 52, 53, 54, 56, 57, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 81, 82, 84, 85, 86, 88, 89, 90, 92, 93, 94, 95
OFFSET
1,2
EXAMPLE
Beatty sequence for sqrt(2): (1,2,4,5,7,8,9,11,12,14,...)
Beatty sequence for sqrt(3): (1,3,5,6,8,10,12,13,15,...)
Intersection: (1,5,8,12,...), as in A346308.
a(2) = 3 because floor(3*sqrt(3)) = floor(4*sqrt(2)). (For each such k, there is only one such h.)
MATHEMATICA
z = 200; r = Sqrt[2]; s = Sqrt[3];
u = Table[Floor[n r], {n, 0, z}]; (*A001951*)
v = Table[Floor[n s], {n, 1, z}]; (*A022838*)
w = Intersection[u, v] (*A346308*)
zz = -1 + Length[w];
Table[Ceiling[w[[n]]/r], {n, 1, zz}] (* A347467 *)
Table[Ceiling[w[[n]]/s], {n, 1, zz}] (* A347468 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Oct 28 2021
STATUS
approved