login
A081534
Numbers k such that 1 + 2 ... + k divides lcm(1,2,...,k), or, in other words, lcm(1,2,...,k) is a multiple of the k-th triangular number.
0
1, 3, 5, 7, 9, 11, 13, 14, 15, 17, 19, 20, 21, 23, 25, 27, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 43, 44, 45, 47, 49, 50, 51, 53, 54, 55, 56, 57, 59, 61, 62, 63, 64, 65, 67, 68, 69, 71, 73, 74, 75, 76, 77, 79, 81, 83, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 95, 97, 98, 99, 101
OFFSET
1,2
COMMENTS
k(k+1)/2 divides k! if k+1 is not a prime.
FORMULA
Union of odd numbers and even numbers j such that j+1 is neither prime nor prime power. - Vladeta Jovovic, Mar 30 2003
MATHEMATICA
Select[Range[110], Divisible[LCM@@Range[#], (#(#+1))/2]&] (* Harvey P. Dale, Jun 04 2012 *)
PROG
(PARI) isok(k) = !(lcm(vector(k, j, j)) % (k*(k+1)/2)); \\ Michel Marcus, Mar 15 2018
CROSSREFS
Cf. A006134.
Sequence in context: A329405 A194391 A347468 * A373347 A214547 A097218
KEYWORD
nonn
AUTHOR
Amarnath Murthy, Mar 28 2003
EXTENSIONS
More terms from Ray Chandler, Aug 07 2003
STATUS
approved