login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A347421
Numbers k such that the product of the first k semiprimes is divisible by the sum of the first k semiprimes.
2
1, 9, 19, 29, 30, 31, 32, 33, 35, 36, 40, 44, 45, 46, 47, 51, 55, 57, 64, 67, 70, 71, 72, 74, 81, 83, 84, 92, 94, 95, 96, 97, 103, 104, 105, 107, 108, 109, 113, 116, 118, 124, 125, 127, 130, 131, 132, 133, 136, 138, 140, 142, 144, 158, 159, 160, 167, 177, 182, 184, 188, 191, 196, 202, 203, 206
OFFSET
1,2
COMMENTS
What are the asymptotics of a(n)/n as n -> infinity?
LINKS
EXAMPLE
a(2) = 9 is a term because the first 9 semiprimes are 4, 6, 9, 10, 14, 15, 21, 22, 25, and 4*6*9*10*14*15*21*22*25 = 5239080000 is divisible by 4+6+9+10+14+15+21+22+25 = 126.
MAPLE
R:= NULL:
s:= 0: p:= 1: zcount:= 0: scount:= 0:
for n from 4 while zcount < 100 do
if numtheory:-bigomega(n) = 2 then
s:= s+n; p:= p*n;
scount:= scount+1;
if p mod s = 0 then zcount:= zcount+1; R:= R, scount fi
fi
od:
R;
MATHEMATICA
sp = Select[Range[700], PrimeOmega[#] == 2 &]; Position[Divisible[Rest @ FoldList[Times, 1, sp], Accumulate @ sp], True] // Flatten (* Amiram Eldar, Aug 31 2021 *)
PROG
(Python)
from sympy import factorint
def aupto(limit):
alst, i, k, s, p = [], 1, 0, 0, 1
while k < limit:
if sum(factorint(i).values()) == 2:
k += 1; s += i; p *= i
if p%s == 0: alst.append(k)
i += 1
return alst
print(aupto(206)) # Michael S. Branicky, Aug 31 2021
(Julia)
using Nemo
function A347421List(upto)
c, s, p = 0, ZZ(0), ZZ(1)
list = Int32[]
for n in 4:typemax(Int32)
if 2 == sum([e for (p, e) in factor(n)])
s += n; p *= n; c += 1
if divisible(p, s)
c > upto && return list
push!(list, c)
end
end
end
end
A347421List(206) |> println # Peter Luschny, Aug 31 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Aug 31 2021
STATUS
approved