login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A347419
Number of partitions of n into two or more distinct primes.
3
0, 0, 0, 0, 1, 0, 1, 1, 1, 2, 0, 2, 1, 2, 2, 3, 1, 4, 2, 4, 4, 4, 4, 5, 5, 6, 5, 6, 6, 6, 8, 7, 9, 9, 9, 11, 10, 11, 13, 12, 13, 15, 14, 17, 16, 18, 18, 20, 21, 23, 22, 25, 25, 27, 30, 29, 32, 32, 34, 37, 38, 40, 42, 44, 45, 50, 49, 53, 55, 57, 60, 64, 66, 70, 71, 76, 78, 83, 86, 89, 93, 96
OFFSET
1,10
COMMENTS
Every positive integer can be written as a sum of two or more distinct primes except 1,2,3,4,6 and 11.
FORMULA
a(n) = A000586(n) - A010051(n).
EXAMPLE
a(5) = 1: 2+3.
a(18) = 4: 11+7, 11+5+2, 13+5, 13+3+2.
MAPLE
h:= proc(n) h(n):=`if`(n<2, 0, `if`(isprime(n), n, h(n-1))) end:
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<2, 0,
b(n, h(i-1))+b(n-i, h(min(n-i, i-1)))))
end:
a:= n-> b(n, h(n-1)):
seq(a(n), n=1..100); # Alois P. Heinz, Sep 03 2021
MATHEMATICA
m = 24; Rest @ CoefficientList[Series[Product[(1 + x^Prime[k]), {k, 1, m}], {x, 0, Prime[m]}], x] - Table[Boole @ PrimeQ[n], {n, 1, Prime[m]}] (* Amiram Eldar, Sep 03 2021 *)
PROG
(Python)
from sympy import isprime, primerange
from functools import cache
@cache
def A000586(n, k=None): # after Charles R Greathouse IV
if k == None: k = n
if n < 1: return int(n == 0)
return sum(A000586(n-p, p-1) for p in primerange(1, k+1))
def a(n): return A000586(n) - isprime(n)
print([a(n) for n in range(1, 83)]) # Michael S. Branicky, Sep 03 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Ayoub Saber Rguez, Aug 31 2021
STATUS
approved