login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A347176
G.f.: Sum_{k>=1} (-1)^(k+1) * k * x^(k^2) / (1 - x^(k^2)).
3
1, 1, 1, -1, 1, 1, 1, -1, 4, 1, 1, -1, 1, 1, 1, -5, 1, 4, 1, -1, 1, 1, 1, -1, 6, 1, 4, -1, 1, 1, 1, -5, 1, 1, 1, -4, 1, 1, 1, -1, 1, 1, 1, -1, 4, 1, 1, -5, 8, 6, 1, -1, 1, 4, 1, -1, 1, 1, 1, -1, 1, 1, 4, -13, 1, 1, 1, -1, 1, 1, 1, -4, 1, 1, 6, -1, 1, 1, 1, -5, 13, 1, 1, -1, 1, 1, 1, -1, 1, 4
OFFSET
1,9
COMMENTS
Excess of sum of square roots of odd square divisors of n over sum of square roots of even square divisors of n.
LINKS
FORMULA
Multiplicative with a(2^e) = 3 - 2^(floor(e/2) + 1), and a(p^e) = (p^(floor(e/2) + 1) - 1)/(p - 1) for p > 2. - Amiram Eldar, Nov 15 2022
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = log(2) (A002162). - Amiram Eldar, Mar 01 2023
MATHEMATICA
nmax = 90; CoefficientList[Series[Sum[(-1)^(k + 1) k x^(k^2)/(1 - x^(k^2)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
Table[DivisorSum[n, (-1)^(# + 1) #^(1/2) &, IntegerQ[#^(1/2)] &], {n, 1, 90}]
f[p_, e_] := (p^(Floor[e/2] + 1) - 1)/(p - 1); f[2, e_] := 3 - 2^(Floor[e/2] + 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 15 2022 *)
PROG
(PARI) a(n) = sumdiv(n, d, if (issquare(d), (-1)^((d%2)+1)*sqrtint(d))); \\ Michel Marcus, Aug 22 2021
(PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 1]==2, 3 - 2^(floor(f[i, 2]/2) + 1), (f[i, 1]^(floor(f[i, 2]/2) + 1) - 1)/(f[i, 1] - 1))); } \\ Amiram Eldar, Nov 15 2022
CROSSREFS
KEYWORD
sign,mult
AUTHOR
Ilya Gutkovskiy, Aug 21 2021
STATUS
approved