login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f.: Sum_{k>=1} (-1)^(k+1) * k * x^(k^2) / (1 - x^(k^2)).
3

%I #19 Mar 01 2023 02:02:16

%S 1,1,1,-1,1,1,1,-1,4,1,1,-1,1,1,1,-5,1,4,1,-1,1,1,1,-1,6,1,4,-1,1,1,1,

%T -5,1,1,1,-4,1,1,1,-1,1,1,1,-1,4,1,1,-5,8,6,1,-1,1,4,1,-1,1,1,1,-1,1,

%U 1,4,-13,1,1,1,-1,1,1,1,-4,1,1,6,-1,1,1,1,-5,13,1,1,-1,1,1,1,-1,1,4

%N G.f.: Sum_{k>=1} (-1)^(k+1) * k * x^(k^2) / (1 - x^(k^2)).

%C Excess of sum of square roots of odd square divisors of n over sum of square roots of even square divisors of n.

%H Amiram Eldar, <a href="/A347176/b347176.txt">Table of n, a(n) for n = 1..10000</a>

%F Multiplicative with a(2^e) = 3 - 2^(floor(e/2) + 1), and a(p^e) = (p^(floor(e/2) + 1) - 1)/(p - 1) for p > 2. - _Amiram Eldar_, Nov 15 2022

%F Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = log(2) (A002162). - _Amiram Eldar_, Mar 01 2023

%t nmax = 90; CoefficientList[Series[Sum[(-1)^(k + 1) k x^(k^2)/(1 - x^(k^2)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest

%t Table[DivisorSum[n, (-1)^(# + 1) #^(1/2) &, IntegerQ[#^(1/2)] &], {n, 1, 90}]

%t f[p_, e_] := (p^(Floor[e/2] + 1) - 1)/(p - 1); f[2, e_] := 3 - 2^(Floor[e/2] + 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Nov 15 2022 *)

%o (PARI) a(n) = sumdiv(n, d, if (issquare(d), (-1)^((d%2)+1)*sqrtint(d))); \\ _Michel Marcus_, Aug 22 2021

%o (PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,1]==2, 3 - 2^(floor(f[i,2]/2) + 1), (f[i,1]^(floor(f[i,2]/2) + 1) - 1)/(f[i,1] - 1)));} \\ _Amiram Eldar_, Nov 15 2022

%Y Cf. A002129, A002162, A037213, A069290, A344299, A344300.

%K sign,mult

%O 1,9

%A _Ilya Gutkovskiy_, Aug 21 2021