login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A347170
The lexicographically earliest sequence with a(1) = 1 and Omega(a(i) + a(k)) = 3 for i < k <= n.
0
1, 7, 11, 91, 164, 931, 5131, 6403, 11811, 19507, 87907, 87914, 341811, 7961923, 7963880, 8037362, 8044275, 8140244, 8593387, 11055787, 14017267, 37262755, 164218555, 551667835, 2340626587, 2970952034, 3788070787
OFFSET
1,2
COMMENTS
Sum of any two terms is in A014612. Is the sequence infinite?
EXAMPLE
1 + 7 = 8 = A014612(1), 1 + 11 = 12 = A014612(2), 7 + 11 = 18 = A014612(3).
MATHEMATICA
a[1] = 1; a[n_] := a[n] = Module[{k = a[n - 1] + 1}, While[! AllTrue[Array[a, n - 1], PrimeOmega[# + k] == 3 &], k++]; k]; Array[a, 12] (* Amiram Eldar, Sep 29 2021 *)
PROG
(PARI) first(n)=my(v=vector(n), t); v[1]=1; for(k=2, n, t=v[k-1]; while(t++, for(i=1, k-1, if(bigomega(v[i]+t)!=3, next(2))); break); v[k]=t); v; \\ Charles R Greathouse IV, Oct 03 2021
(PARI) nxt(v, n=v[#v]+1)=my(b=min(97, n-1)); while(1, for(i=1, #v, my(f=factor(v[i]+n, b), e=f[, 2]); if(vecsum(e)>3 || vecsum(e)==3 && !isprime(f[#e, 1]), n++; next(2))); for(i=1, #v, if(bigomega(v[i]+n)!=3, n++; next(2))); return(n)); \\ Charles R Greathouse IV, Oct 03 2021
CROSSREFS
Cf. A001222 (Omega), A014612.
Sequence in context: A337099 A123763 A018680 * A107187 A132958 A371485
KEYWORD
nonn
AUTHOR
Zak Seidov, Sep 26 2021
STATUS
approved