login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A347171 Triangle read by rows where T(n,k) is the sum of Golay-Rudin-Shapiro terms GRS(j) (A020985) for j in the range 0 <= j < 2^n and having binary weight wt(j) = A000120(j) = k. 2
1, 1, 1, 1, 2, -1, 1, 3, -1, 1, 1, 4, 0, 0, -1, 1, 5, 2, -2, 1, 1, 1, 6, 5, -4, 3, -2, -1, 1, 7, 9, -5, 3, -3, 3, 1, 1, 8, 14, -4, 0, 0, 2, -4, -1, 1, 9, 20, 0, -6, 6, -4, 0, 5, 1, 1, 10, 27, 8, -14, 12, -10, 8, -3, -6, -1, 1, 11, 35, 21, -22, 14, -10, 10, -11, 7, 7, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,5
COMMENTS
Doche and Mendès France form polynomials P_n(y) = Sum_{j=0..2^n-1} GRS(j) * y^wt(j) and here row n is the coefficients of P_n starting from the constant term, so P_n(y) = Sum_{k=0..n} T(n,k)*y^k. They conjecture that the number of real roots of P_n is A285869(n).
Row sum n is the sum of GRS terms from j = 0 to 2^n-1 inclusive, which Brillhart and Morton (Beispiel 6 page 129) show is A020986(2^n-1) = 2^ceiling(n/2) = A060546(n). The same follows by substituting y=1 in the P_n recurrence or the generating function.
LINKS
John Brillhart and Patrick Morton, Über Summen von Rudin-Shapiroschen Koeffizienten, Illinois Journal of Mathematics, volume 22, issue 1, 1978, pages 126-148.
Christophe Doche and Michel Mendès France, An Exercise on the Average Number of Real Zeros of Random Real Polynomials, Finite and Infinite Combinatorics conference, Budapest, 2001, pages 1-14, see Rudin-Shapiro example page 9.
FORMULA
T(n,k) = T(n-1,k) - T(n-1,k-1) + 2*T(n-2,k-1) for n>=2, and taking T(n,k)=0 if k<0 or k>n.
T(n,k) = (-1)^k * A104967(n,n-k).
Row polynomial P_n(y) = (1-y)*P_{n-1}(y) + 2*y*P_{n-2}(y) for n>=2. [Doche and Mendès France]
G.f.: (1 + 2*x*y)/(1 + x*(y-1) - 2*x^2*y).
Column g.f.: C_k(x) = 1/(1-x) for k=0 and C_k(x) = x^k * (2*x-1)^(k-1) / (1-x)^(k+1) for k>=1.
EXAMPLE
Triangle begins
k=0 k=1 k=2 k=3 k=4 k=5 k=6 k=7
n=0: 1
n=1: 1, 1
n=2: 1, 2, -1
n=3: 1, 3, -1, 1
n=4: 1, 4, 0, 0, -1
n=5: 1, 5, 2, -2, 1, 1
n=6: 1, 6, 5, -4, 3, -2, -1
n=7: 1, 7, 9, -5, 3, -3, 3, 1
For T(5,3), those j in the range 0 <= j < 2^5 with wt(j) = 3 are
j = 7 11 13 14 19 21 22 25 26 28
GRS(j) = +1 -1 -1 +1 -1 +1 -1 -1 -1 +1 total -2 = T(5,3)
PROG
(PARI) my(M=Mod('x, 'x^2-(1-'y)*'x-2*'y)); row(n) = Vecrev(subst(lift(M^n), 'x, 'y+1));
CROSSREFS
Cf. A020985 (GRS), A020986 (GRS partial sums), A000120 (binary weight), A285869.
Columns k=0..3: A000012, A001477, A000096, A275874.
Cf. A165326 (main diagonal), A248157 (second diagonal negated).
Cf. A060546 (row sums), A104969 (row sums squared terms).
Cf. A329301 (antidiagonal sums).
Cf. A104967 (rows reversed, up to signs).
Sequence in context: A196931 A175465 A080209 * A127949 A051340 A167407
KEYWORD
sign,look,tabl
AUTHOR
Kevin Ryde, Aug 21 2021
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 23 08:55 EDT 2024. Contains 374546 sequences. (Running on oeis4.)