login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The lexicographically earliest sequence with a(1) = 1 and Omega(a(i) + a(k)) = 3 for i < k <= n.
0

%I #26 Oct 09 2021 07:40:40

%S 1,7,11,91,164,931,5131,6403,11811,19507,87907,87914,341811,7961923,

%T 7963880,8037362,8044275,8140244,8593387,11055787,14017267,37262755,

%U 164218555,551667835,2340626587,2970952034,3788070787

%N The lexicographically earliest sequence with a(1) = 1 and Omega(a(i) + a(k)) = 3 for i < k <= n.

%C Sum of any two terms is in A014612. Is the sequence infinite?

%e 1 + 7 = 8 = A014612(1), 1 + 11 = 12 = A014612(2), 7 + 11 = 18 = A014612(3).

%t a[1] = 1; a[n_] := a[n] = Module[{k = a[n - 1] + 1}, While[! AllTrue[Array[a, n - 1], PrimeOmega[# + k] == 3 &], k++]; k]; Array[a, 12] (* _Amiram Eldar_, Sep 29 2021 *)

%o (PARI) first(n)=my(v=vector(n),t); v[1]=1; for(k=2,n, t=v[k-1]; while(t++, for(i=1,k-1, if(bigomega(v[i]+t)!=3, next(2))); break); v[k]=t); v; \\ _Charles R Greathouse IV_, Oct 03 2021

%o (PARI) nxt(v,n=v[#v]+1)=my(b=min(97,n-1)); while(1, for(i=1,#v, my(f=factor(v[i]+n,b),e=f[,2]); if(vecsum(e)>3 || vecsum(e)==3 && !isprime(f[#e,1]), n++; next(2))); for(i=1,#v, if(bigomega(v[i]+n)!=3, n++; next(2))); return(n)); \\ _Charles R Greathouse IV_, Oct 03 2021

%Y Cf. A001222 (Omega), A014612.

%K nonn

%O 1,2

%A _Zak Seidov_, Sep 26 2021