login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A346297
Slowest growing sequence of semiprimes such that any accumulating sum is a semiprime.
1
4, 6, 15, 21, 39, 49, 51, 62, 74, 77, 87, 94, 95, 111, 129, 133, 142, 158, 166, 178, 183, 185, 187, 203, 205, 209, 214, 218, 226, 237, 287, 298, 302, 309, 323, 326, 334, 346, 355, 361, 362, 365, 371, 382, 394, 398, 451, 473, 478, 489, 497, 519, 529, 554, 562, 591, 597, 623, 649, 662, 669, 679, 689, 697, 707, 717, 746
OFFSET
1,1
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
EXAMPLE
4 + 6 = 10 = 2*5, 10 + 15 = 25 = 5*5, 25 + 21 = 46 = 2*23.
MATHEMATICA
s = {4}; t = 4; Do[While[2 != PrimeOmega[n] || 2 != PrimeOmega[t + n] , n++]; AppendTo[s, n]; t = t + n; n++, {50}]; s
PROG
(PARI) issemi(n)=bigomega(n)==2;
first(n)=my(v=vector(n), s, t); s=v[1]=4; for(k=2, n, t=v[k-1]; while(!issemi(t++) || !issemi(s+t), ); s+=v[k]=t); v; \\ Charles R Greathouse IV, Oct 02 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Zak Seidov, Sep 28 2021
STATUS
approved