login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A346296
a(0) = 1; thereafter a(n) = 2*a(n-1) + 1, with digits rearranged into nondecreasing order.
1
1, 3, 7, 15, 13, 27, 55, 111, 223, 447, 589, 1179, 2359, 1479, 2599, 1599, 1399, 2799, 5599, 11199, 22399, 44799, 58999, 117999, 235999, 147999, 259999, 159999, 139999, 279999, 559999, 1119999, 2239999, 4479999, 5899999, 11799999, 23599999, 14799999, 25999999
OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,0,0,0,0,100,-100).
FORMULA
a(n) = A004185(2*a(n-1)+1).
For k >= 1;
a(12*k-9) = 100^(k-1) * 16 - 1;
a(12*k-8) = 100^(k-1) * 14 - 1;
a(12*k-7) = 100^(k-1) * 28 - 1;
a(12*k-6) = 100^(k-1) * 56 - 1;
a(12*k-5) = 100^(k-1) * 112 - 1;
a(12*k-4) = 100^(k-1) * 224 - 1;
a(12*k-3) = 100^(k-1) * 448 - 1;
a(12*k-2) = 100^(k-1) * 590 - 1;
a(12*k-1) = 100^(k-1) * 1180 - 1;
a(12*k) = 100^(k-1) * 2360 - 1;
a(12*k+1) = 100^(k-1) * 1480 - 1;
a(12*k+2) = 100^(k-1) * 2600 - 1.
G.f.: -(1800*x^15 -720*x^14 +1080*x^13 -1080*x^12 -590*x^11 -142*x^10 -224*x^9 -112*x^8 -56*x^7 -28*x^6 -14*x^5 +2*x^4 -8*x^3 -4*x^2 -2*x -1) / ((x-1)*(10*x^6-1)*(10*x^6+1)). - Alois P. Heinz, Aug 02 2021
a(n) = 100*a(n-12) + 99 for n >= 15. - Pontus von Brömssen, Sep 01 2021
EXAMPLE
a(3) = A004185(2*7+1) = A004185(15) = 15.
a(4) = A004185(2*15+1) = A004185(31) = 13.
MATHEMATICA
a[0] = 1; a[n_] := a[n] = FromDigits @ Sort @ IntegerDigits[2*a[n - 1] + 1]; Array[a, 45, 0] (* Amiram Eldar, Jul 13 2021 *)
NestList[FromDigits[Sort[IntegerDigits[2#+1]]]&, 1, 40] (* Harvey P. Dale, Oct 01 2023 *)
PROG
(PARI) lista(nn) = {my(va = vector(nn)); va[1] = 1; for (n=2, nn, va[n] = fromdigits(vecsort(digits(2*va[n-1]+1))); ); va; } \\ Michel Marcus, Aug 31 2021
(Python)
from itertools import accumulate
def atis(anm1, _): return int("".join(sorted(str(2*anm1+1))))
print(list(accumulate([1]*39, atis))) # Michael S. Branicky, Aug 31 2021
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
Ctibor O. Zizka, Jul 13 2021
STATUS
approved