OFFSET
0,1
COMMENTS
Robinson (1980) conjectured and Newman and Widder (1981) proved that this integral is equal to the limit given in the Formula section.
REFERENCES
Murray S. Klamkin (ed.), Problems in Applied Mathematics: Selections from SIAM Review, Philadelphia, PA: Society for Industrial and Applied Mathematics, 1990, pp. 281-282.
LINKS
H. P. Robinson, A Conjectured Limit, Problem 80-7, SIAM Review, Vol. 22, No. 2 (1980), p. 229; D. J. Newman and D. V. Widder, Solution, ibid., Vol. 23, No. 2 (1981), pp. 256-257.
FORMULA
Equals lim_{n->oo} (Sum_{k=2..n} 1/log(k) - Integral_{x=0..n} (1/log(x)) dx).
EXAMPLE
-0.2432383428909807554150591354654623071783049...
CROSSREFS
KEYWORD
AUTHOR
Amiram Eldar, Jun 29 2021
STATUS
approved