login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A345632
Sum of terms of even index in the binomial decomposition of n^(n-1).
1
1, 1, 5, 28, 353, 3376, 66637, 908608, 24405761, 432891136, 14712104501, 321504185344, 13218256749601, 343360783937536, 16565151205544957, 498676704524517376, 27614800115689879553, 945381827279671853056, 59095217374989483261925, 2267322327322331161821184, 157904201452248753415276001
OFFSET
1,3
COMMENTS
When writing n^(n-1) (A000169) as a sum of powers of n using the binomial theorem, one can separately sum the even and the odd powers of n. This is the even part.
FORMULA
a(n+1) = Sum_{k=0..floor(n/2)} n^(2k) binomial(n, 2k).
a(n+1) = ((1 - n)^n + (1 + n)^n)/2. - Stefano Spezia, Jun 21 2021
MATHEMATICA
Table[Plus @@ Table[(n-1)^(2 k) Binomial[n-1, 2 k], {k, 0, Floor[n/2]}], {n, 1, 21}]
CROSSREFS
Cf. A345633 (odd part).
Sequence in context: A174464 A372163 A354897 * A024068 A308593 A249784
KEYWORD
nonn,easy
AUTHOR
Olivier Gérard, Jun 21 2021
STATUS
approved