login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum of terms of even index in the binomial decomposition of n^(n-1).
1

%I #16 Jun 21 2021 10:48:49

%S 1,1,5,28,353,3376,66637,908608,24405761,432891136,14712104501,

%T 321504185344,13218256749601,343360783937536,16565151205544957,

%U 498676704524517376,27614800115689879553,945381827279671853056,59095217374989483261925,2267322327322331161821184,157904201452248753415276001

%N Sum of terms of even index in the binomial decomposition of n^(n-1).

%C When writing n^(n-1) (A000169) as a sum of powers of n using the binomial theorem, one can separately sum the even and the odd powers of n. This is the even part.

%F a(n+1) = Sum_{k=0..floor(n/2)} n^(2k) binomial(n, 2k).

%F a(n+1) = ((1 - n)^n + (1 + n)^n)/2. - _Stefano Spezia_, Jun 21 2021

%t Table[Plus @@ Table[(n-1)^(2 k) Binomial[n-1, 2 k], {k, 0, Floor[n/2]}], {n, 1, 21}]

%Y Cf. A345633 (odd part).

%Y Cf. A062024, A302583.

%Y Cf. A000169, A007778, A092364, A081131.

%K nonn,easy

%O 1,3

%A _Olivier Gérard_, Jun 21 2021