login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A345321
Sum of the divisors of n whose cube does not divide n.
1
0, 2, 3, 6, 5, 11, 7, 12, 12, 17, 11, 27, 13, 23, 23, 28, 17, 38, 19, 41, 31, 35, 23, 57, 30, 41, 36, 55, 29, 71, 31, 60, 47, 53, 47, 90, 37, 59, 55, 87, 41, 95, 43, 83, 77, 71, 47, 121, 56, 92, 71, 97, 53, 116, 71, 117, 79, 89, 59, 167, 61, 95, 103, 120, 83, 143, 67, 125, 95
OFFSET
1,2
LINKS
FORMULA
a(n) = Sum_{k=1..n} k * (ceiling(n/k^3) - floor(n/k^3)) * (1 - ceiling(n/k) + floor(n/k)).
a(n) = A000203(n) - A333843(n). - Rémy Sigrist, Jun 14 2021
EXAMPLE
a(16) = 28; The divisors of 16 whose cube does not divide 16 are: 4, 8 and 16. The sum of these divisors is then 4 + 8 + 16 = 28.
MATHEMATICA
Table[Sum[k (Ceiling[n/k^3] - Floor[n/k^3]) (1 - Ceiling[n/k] + Floor[n/k]), {k, n}], {n, 80}]
Table[Total[Select[Divisors[n], Mod[n, #^3]!=0&]], {n, 100}] (* Harvey P. Dale, May 01 2022 *)
PROG
(PARI) a(n) = sumdiv(n, d, if (n % d^3, d)); \\ Michel Marcus, Jun 13 2021
(Python 3.8+)
from math import prod
from sympy import factorint
def A345321(n):
f = factorint(n).items()
return prod((p**(q+1)-1)//(p-1) for p, q in f) - prod((p**(q//3+1)-1)//(p-1) for p, q in f) # Chai Wah Wu, Jun 14 2021
CROSSREFS
Sequence in context: A350337 A133477 A303695 * A378545 A350339 A039653
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Jun 13 2021
STATUS
approved