login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum of the divisors of n whose cube does not divide n.
1

%I #19 Jun 04 2022 21:16:56

%S 0,2,3,6,5,11,7,12,12,17,11,27,13,23,23,28,17,38,19,41,31,35,23,57,30,

%T 41,36,55,29,71,31,60,47,53,47,90,37,59,55,87,41,95,43,83,77,71,47,

%U 121,56,92,71,97,53,116,71,117,79,89,59,167,61,95,103,120,83,143,67,125,95

%N Sum of the divisors of n whose cube does not divide n.

%H Harvey P. Dale, <a href="/A345321/b345321.txt">Table of n, a(n) for n = 1..1000</a>

%F a(n) = Sum_{k=1..n} k * (ceiling(n/k^3) - floor(n/k^3)) * (1 - ceiling(n/k) + floor(n/k)).

%F a(n) = A000203(n) - A333843(n). - _Rémy Sigrist_, Jun 14 2021

%e a(16) = 28; The divisors of 16 whose cube does not divide 16 are: 4, 8 and 16. The sum of these divisors is then 4 + 8 + 16 = 28.

%t Table[Sum[k (Ceiling[n/k^3] - Floor[n/k^3]) (1 - Ceiling[n/k] + Floor[n/k]), {k, n}], {n, 80}]

%t Table[Total[Select[Divisors[n],Mod[n,#^3]!=0&]],{n,100}] (* _Harvey P. Dale_, May 01 2022 *)

%o (PARI) a(n) = sumdiv(n, d, if (n % d^3, d)); \\ _Michel Marcus_, Jun 13 2021

%o (Python 3.8+)

%o from math import prod

%o from sympy import factorint

%o def A345321(n):

%o f = factorint(n).items()

%o return prod((p**(q+1)-1)//(p-1) for p, q in f) - prod((p**(q//3+1)-1)//(p-1) for p, q in f) # _Chai Wah Wu_, Jun 14 2021

%Y Cf. A000203, A333843.

%K nonn

%O 1,2

%A _Wesley Ivan Hurt_, Jun 13 2021