login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A345014
a(n) is the least nonnegative integer k such that 2^n - k is a Sophie Germain prime.
1
0, 1, 3, 5, 3, 11, 15, 5, 3, 5, 9, 23, 81, 83, 135, 143, 9, 23, 117, 5, 9, 161, 159, 317, 339, 203, 219, 95, 693, 35, 105, 5, 321, 425, 69, 23, 201, 191, 219, 983, 1101, 371, 747, 287, 429, 743, 2649, 1355, 81, 233, 237, 635, 2403, 395, 1125, 1997, 69, 9005
OFFSET
1,3
LINKS
FORMULA
a(n) = (A057821(n+1) + 1)/2.
MATHEMATICA
Table[k=0; While[!(PrimeQ[p=2^n-k]&&PrimeQ[2p+1]), k++]; k, {n, 58}] (* Giorgos Kalogeropoulos, Sep 15 2021 *)
PROG
(Python)
from sympy import isprime
def a(n):
k = 0
while True:
if isprime(2 ** n - k) and isprime(2 * (2 ** n - k) + 1):
return k
k += 1
print([a(i) for i in range(1, 21)])
(PARI) a(n) = my(k=0, p); while (!(isprime(p=2^n-k) && isprime(2*p+1)), k++); k; \\ Michel Marcus, Sep 15 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Artsiom Palkounikau, Sep 15 2021
STATUS
approved