The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A177904 a(1)=a(2)=a(3)=1; thereafter a(n) = gpf(a(n-1)+a(n-2)+a(n-3)), where gpf = "greatest prime factor". 10
 1, 1, 1, 3, 5, 3, 11, 19, 11, 41, 71, 41, 17, 43, 101, 23, 167, 97, 41, 61, 199, 43, 101, 7, 151, 37, 13, 67, 13, 31, 37, 3, 71, 37, 37, 29, 103, 13, 29, 29, 71, 43, 13, 127, 61, 67, 17, 29, 113, 53, 13, 179, 7, 199, 11, 31, 241, 283, 37, 17, 337, 23, 29, 389, 7, 17, 59, 83, 53, 13, 149, 43, 41, 233, 317, 197, 83, 199, 479, 761, 1439, 47, 107 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS After 86 steps, enters a cycle of length 212 (see A177923). LINKS N. J. A. Sloane, Table of n, a(n) for n = 1..1000 G. Back and M. Caragiu, The greatest prime factor and recurrent sequences, Fib. Q., 48 (2010), 358-362. MAPLE with(numtheory, divisors); A006530 := proc(n) local i, t1, t2, t3, t4, t5; t1 := divisors(n); t2 := convert(t1, list); t3 := sort(t2); t4 := nops(t3); t5 := 1; for i from 1 to t4 do if isprime(t3[t4+1-i]) then RETURN(t3[t4+1-i]); fi; od; 1; end; M:=1000; t1:=[1, 1, 1]; for n from 4 to M do t1:=[op(t1), A006530(t1[n-1]+t1[n-2]+t1[n-3])]; od: t1; MATHEMATICA nxt[{a_, b_, c_}]:={b, c, FactorInteger[a+b+c][[-1, 1]]}; NestList[nxt, {1, 1, 1}, 90][[All, 1]] (* Harvey P. Dale, Jul 17 2017 *) PROG (Haskell) a177904 n = a177904_list !! (n-1) a177904_list = 1 : 1 : 1 : (map a006530 \$ zipWith (+)    a177904_list (tail \$ zipWith (+) a177904_list \$ tail a177904_list)) -- Reinhard Zumkeller, Jul 24 2012 CROSSREFS Cf. A006530, A175723, A178174, A178095, A214320. Sequence in context: A345014 A328878 A178095 * A049072 A059887 A023585 Adjacent sequences:  A177901 A177902 A177903 * A177905 A177906 A177907 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, Dec 16 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 27 13:38 EST 2022. Contains 350607 sequences. (Running on oeis4.)