login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A344970
a(n) = A011772(n) / gcd(A011772(n), A344875(n)).
8
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 7, 5, 1, 1, 1, 1, 15, 1, 11, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 11, 1, 7, 1, 1, 19, 1, 1, 1, 5, 1, 16, 9, 23, 1, 16, 1, 1, 17, 13, 1, 9, 1, 8, 1, 1, 1, 15, 1, 31, 9, 1, 25, 11, 1, 1, 23, 5, 1, 21, 1, 1, 1, 4, 7, 1, 1, 16, 1, 1, 1, 4, 17, 43, 29, 16, 1, 35, 13, 23, 1, 47, 19, 1, 1, 1, 11
OFFSET
1,12
COMMENTS
Denominator of the ratio A344875(n)/A011772(n): 1/1, 3/3, 2/2, 7/7, 4/4, 6/3, 6/6, 15/15, 8/8, 12/4, 10/10, 14/8, 12/12, 18/7, 8/5, 31/31, 16/16, 24/8, 18/18, 28/15, 12/6, 30/11, ..., = 1/1, 1/1, 1/1, 1/1, 1/1, 2/1, 1/1, 1/1, 1/1, 3/1, 1/1, 7/4, 1/1, 18/7, 8/5, 1/1, 1/1, 3/1, 1/1, 28/15, 2/1, 30/11, etc.
FORMULA
a(n) = A011772(n) / A344969(n) = A011772(n) / gcd(A011772(n), A344875(n)).
MATHEMATICA
A011772[n_] := Module[{m = 1}, While[Not[IntegerQ[m(m+1)/(2n)]], m++]; m];
A344875[n_] := Product[{p, e} = pe; If[p == 2, 2^(1+e)-1, p^e-1], {pe, FactorInteger[n]}];
a[n_] := A011772[n]/GCD[A011772[n], A344875[n]];
Array[a, 100] (* Jean-François Alcover, Jun 12 2021 *)
PROG
(PARI)
A011772(n) = { if(n==1, return(1)); my(f=factor(if(n%2, n, 2*n)), step=vecmax(vector(#f~, i, f[i, 1]^f[i, 2]))); forstep(m=step, 2*n, step, if(m*(m-1)/2%n==0, return(m-1)); if(m*(m+1)/2%n==0, return(m))); }; \\ From A011772
A344875(n) = { my(f=factor(n)~); prod(i=1, #f, (f[1, i]^(f[2, i]+(2==f[1, i]))-1)); };
A344970(n) = { my(u=A011772(n)); (u/gcd(u, A344875(n))); };
CROSSREFS
Cf. A011772, A344875, A344969, A344971 (numerators), A344972 (ratio floored down), A344974 (positions of ones), A344980 (of terms > 1).
Sequence in context: A363974 A342633 A094649 * A135857 A156558 A082455
KEYWORD
nonn,frac
AUTHOR
Antti Karttunen, Jun 04 2021
STATUS
approved