login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A363974
Expansion of Sum_{k>0} x^k / (1 - x^(2*k))^3.
1
1, 1, 4, 1, 7, 4, 11, 1, 19, 7, 22, 4, 29, 11, 46, 1, 46, 19, 56, 7, 80, 22, 79, 4, 98, 29, 124, 11, 121, 46, 137, 1, 178, 46, 188, 19, 191, 56, 242, 7, 232, 80, 254, 22, 337, 79, 301, 4, 336, 98, 400, 29, 379, 124, 434, 11, 494, 121, 466, 46, 497, 137, 623, 1, 596, 178, 596, 46, 712, 188, 667, 19
OFFSET
1,3
FORMULA
G.f.: Sum_{k>0} k*(k+1)/2 * x^(2*k-1) / (1 - x^(2*k-1)).
a(n) = Sum_{d|n, d==1 mod 2} binomial((d+1)/2+1,2).
MATHEMATICA
a[n_] := DivisorSum[n, Binomial[(#+1)/2+1, 2] &, OddQ[#] &]; Array[a, 100] (* Amiram Eldar, Jun 30 2023 *)
PROG
(PARI) a(n) = sumdiv(n, d, (d%2==1)*binomial((d+1)/2+1, 2));
CROSSREFS
Cf. A363969.
Sequence in context: A019651 A262606 A286387 * A342633 A094649 A344970
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jun 30 2023
STATUS
approved