login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A363975
Expansion of Sum_{k>0} x^k / (1 - x^(3*k))^3.
1
1, 1, 1, 4, 1, 1, 7, 4, 1, 11, 1, 4, 16, 7, 1, 25, 1, 1, 29, 14, 7, 37, 1, 4, 46, 16, 1, 65, 1, 11, 67, 25, 1, 79, 7, 4, 92, 29, 16, 119, 1, 7, 121, 40, 1, 137, 1, 25, 160, 56, 1, 190, 1, 1, 191, 65, 29, 211, 1, 14, 232, 67, 7, 278, 16, 37, 277, 82, 1, 317, 1, 4, 326, 92, 46, 383, 7, 16, 379
OFFSET
1,4
FORMULA
G.f.: Sum_{k>0} k*(k+1)/2 * x^(3*k-2) / (1 - x^(3*k-2)).
a(n) = Sum_{d|n, d==1 mod 3} binomial((d+2)/3+1,2).
MATHEMATICA
a[n_] := DivisorSum[n, Binomial[(#+2)/3+1, 2] &, Mod[#, 3] == 1 &]; Array[a, 100] (* Amiram Eldar, Jun 30 2023 *)
PROG
(PARI) a(n) = sumdiv(n, d, (d%3==1)*binomial((d+2)/3+1, 2));
CROSSREFS
Cf. A363970.
Sequence in context: A046554 A010321 A046550 * A355777 A223489 A016521
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jun 30 2023
STATUS
approved