login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A344875
Multiplicative with a(2^e) = 2^(1+e) - 1, and a(p^e) = p^e - 1 for odd primes p.
19
1, 3, 2, 7, 4, 6, 6, 15, 8, 12, 10, 14, 12, 18, 8, 31, 16, 24, 18, 28, 12, 30, 22, 30, 24, 36, 26, 42, 28, 24, 30, 63, 20, 48, 24, 56, 36, 54, 24, 60, 40, 36, 42, 70, 32, 66, 46, 62, 48, 72, 32, 84, 52, 78, 40, 90, 36, 84, 58, 56, 60, 90, 48, 127, 48, 60, 66, 112, 44, 72, 70, 120, 72, 108, 48, 126, 60, 72, 78, 124, 80, 120
OFFSET
1,2
LINKS
FORMULA
a(n) = A344878(n) * A344879(n).
Multiplicative with a(p^e) = A153151(p^e). - Antti Karttunen, Jul 01 2021
Sum_{k=1..n} a(k) ~ c * n^2, where c = (4/5) * Product_{p prime} (1 - 1/(p*(p+1))) = (4/5) * A065463 = 0.563553... . - Amiram Eldar, Nov 18 2022
MATHEMATICA
f[2, e_] := 2^(e + 1) - 1; f[p_, e_] := p^e - 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jun 03 2021 *)
PROG
(PARI) A344875(n) = { my(f=factor(n)~); prod(i=1, #f, (f[1, i]^(f[2, i]+(2==f[1, i]))-1)); };
(Python 3.8+)
from math import prod
from sympy import factorint
def A344875(n): return prod((p**(1+e) if p == 2 else p**e)-1 for p, e in factorint(n).items()) # Chai Wah Wu, Jun 01 2022
KEYWORD
nonn,mult
AUTHOR
Antti Karttunen, Jun 03 2021
STATUS
approved