login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A344769
a(n) = A005187(n) - A011772(n).
3
0, 0, 2, 0, 4, 7, 5, 0, 8, 14, 9, 14, 11, 18, 21, 0, 16, 26, 17, 23, 33, 30, 20, 31, 23, 37, 24, 46, 26, 41, 27, 0, 53, 50, 53, 62, 35, 54, 62, 63, 39, 61, 40, 53, 77, 65, 43, 62, 47, 73, 81, 62, 50, 77, 95, 61, 92, 84, 55, 101, 57, 88, 93, 0, 103, 119, 65, 118, 112, 117, 68, 79, 71, 109, 122, 93, 129, 140, 75, 94, 79, 121
OFFSET
1,3
FORMULA
a(n) = A005187(n) - A011772(n).
a(n) = A344765(n) + A294898(n).
a(2^e) = 0, for e >= 0.
If n is an odd prime power, then a(n) = n+1-A000120(n). - Chai Wah Wu, Jun 03 2021
PROG
(PARI)
A005187(n) = { my(s=n); while(n>>=1, s+=n); s; };
A011772(n) = { if(n==1, return(1)); my(f=factor(if(n%2, n, 2*n)), step=vecmax(vector(#f~, i, f[i, 1]^f[i, 2]))); forstep(m=step, 2*n, step, if(m*(m-1)/2%n==0, return(m-1)); if(m*(m+1)/2%n==0, return(m))); }; \\ From A011772
A344769(n) = (A005187(n) - A011772(n));
(Python 3.8+)
from itertools import combinations
from math import prod
from sympy import factorint, divisors
from sympy.ntheory.modular import crt
def A344769(n):
c = 2*n-bin(n).count('1')
plist = [p**q for p, q in factorint(2*n).items()]
if len(plist) == 1:
return int(c+1+(plist[0] % 2 - 2)*n)
return int(c-min(min(crt([m, 2*n//m], [0, -1])[0], crt([2*n//m, m], [0, -1])[0]) for m in (prod(d) for l in range(1, len(plist)//2+1) for d in combinations(plist, l)))) # Chai Wah Wu, Jun 03 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 30 2021
STATUS
approved