login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = A005187(n) - A011772(n).
3

%I #18 Jun 04 2021 03:59:59

%S 0,0,2,0,4,7,5,0,8,14,9,14,11,18,21,0,16,26,17,23,33,30,20,31,23,37,

%T 24,46,26,41,27,0,53,50,53,62,35,54,62,63,39,61,40,53,77,65,43,62,47,

%U 73,81,62,50,77,95,61,92,84,55,101,57,88,93,0,103,119,65,118,112,117,68,79,71,109,122,93,129,140,75,94,79,121

%N a(n) = A005187(n) - A011772(n).

%H Antti Karttunen, <a href="/A344769/b344769.txt">Table of n, a(n) for n = 1..16384</a>

%H Antti Karttunen, <a href="/A344769/a344769.txt">Data supplement: n, a(n) computed for n = 1..65537</a>

%F a(n) = A005187(n) - A011772(n).

%F a(n) = A344765(n) + A294898(n).

%F a(2^e) = 0, for e >= 0.

%F If n is an odd prime power, then a(n) = n+1-A000120(n). - _Chai Wah Wu_, Jun 03 2021

%o (PARI)

%o A005187(n) = { my(s=n); while(n>>=1, s+=n); s; };

%o A011772(n) = { if(n==1, return(1)); my(f=factor(if(n%2, n, 2*n)), step=vecmax(vector(#f~, i, f[i, 1]^f[i, 2]))); forstep(m=step, 2*n, step, if(m*(m-1)/2%n==0, return(m-1)); if(m*(m+1)/2%n==0, return(m))); }; \\ From A011772

%o A344769(n) = (A005187(n) - A011772(n));

%o (Python 3.8+)

%o from itertools import combinations

%o from math import prod

%o from sympy import factorint, divisors

%o from sympy.ntheory.modular import crt

%o def A344769(n):

%o c = 2*n-bin(n).count('1')

%o plist = [p**q for p, q in factorint(2*n).items()]

%o if len(plist) == 1:

%o return int(c+1+(plist[0] % 2 - 2)*n)

%o return int(c-min(min(crt([m,2*n//m],[0,-1])[0],crt([2*n//m,m],[0,-1])[0]) for m in (prod(d) for l in range(1,len(plist)//2+1) for d in combinations(plist,l)))) # _Chai Wah Wu_, Jun 03 2021

%Y Cf. A000120, A005187, A011772, A294898, A344763, A344765.

%K nonn

%O 1,3

%A _Antti Karttunen_, May 30 2021