login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A230277 Expansion of f(-q^6)^6 * ( q * chi(-q^3)^4 + 2*q^2 / chi(-q^3)^4 ) in powers of q where chi(), f() are Ramanujan theta functions. 3
1, 2, 0, -4, 8, 0, 0, 8, 0, 16, 0, 0, -10, 0, 0, -16, -16, 0, 0, -32, 0, 0, 0, 0, 39, -20, 0, 0, -40, 0, 0, 32, 0, -32, 0, 0, -70, 0, 0, 64, 80, 0, 0, 0, 0, 0, 0, 0, 49, 78, 0, 40, 56, 0, 0, 0, 0, -80, 0, 0, -22, 0, 0, -64, -80, 0, 0, 64, 0, 0, 0, 0, 110 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..2500

Michael Somos, Introduction to Ramanujan theta functions

Eric Weisstein's World of Mathematics, Ramanujan Theta Functions

FORMULA

Expansion of (eta(q^3)^2 * eta(q^6))^2 + 2 * (eta(q^6)^5 / eta(q^3)^2)^2 in powers of q.

a(n) is multiplicative with a(2^e) = -(-2)^e if e>0, a(3^e) = 0^e, a(p^e) = p^e * (1 + (-1)^e)/2 if p == 3, 7 (mod 8), a(p^e) = a(p)*a(p^(e-1)) - p^2*a(p^(e-2)) and a(p) = t * (-1)^(t mod 3) if p == 1, 5 (mod 8) where t = 2 * if( p == 5 (mod 6) then 4*x*y else p - 8*y^2 ) and p = x^2 + 4*y^2.

a(2*n) = -2 * a(n). a(3*n) = a(4*n + 3) = 0.

a(3*n + 1) = A230280(n). a(3*n + 2) = 2 * A230278(n).

EXAMPLE

G.f. = q + 2*q^2 - 4*q^4 + 8*q^5 + 8*q^8 + 16*q^10 - 10*q^13 - 16*q^16 + ...

MATHEMATICA

a[ n_] := SeriesCoefficient[ With[{t = QPochhammer[ q^3, q^6]^4}, QPochhammer[ q^6]^6 (q t + 2 q^2 / t)], {q, 0, n}]

PROG

(PARI) {a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x^3 + A)^2 * eta(x^6 + A))^2 + 2 * x * (eta(x^6 + A)^5 / eta(x^3 + A)^2)^2, n))}

(PARI) {a(n) = local(A, p, e, x, y, a0, a1); if( n<1, 0, A = factor( n); prod( k=1, matsize(A)[1], if( p = A[k, 1], e = A[k, 2]; if( p==3, 0, if( p==2, -(-2)^e, if( p%8==3 || p%8==7, if(e%2, 0, p^e), for( i = 1, sqrtint( p\4), if( issquare( p - 4*i^2, &x), y = i; break)); y = 2 * if( p%6 == 5, 4*x*y, p - 8*y^2); a1 = y = if( y%3==2, y, -y); a0 = 1; for( i=2, e, x = y*a1 - p^2*a0; a0 = a1; a1 = x); a1))))))}

CROSSREFS

Cf. A230278, A230280.

Sequence in context: A344769 A011121 A255643 * A117902 A021087 A120558

Adjacent sequences: A230274 A230275 A230276 * A230278 A230279 A230280

KEYWORD

sign,mult

AUTHOR

Michael Somos, Oct 15 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 4 16:41 EST 2022. Contains 358563 sequences. (Running on oeis4.)