login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A344628
Primes p such that exactly four numbers among all circular permutations of the digits of p are prime.
7
1193, 1931, 3119, 3779, 7793, 7937, 9311, 9377, 11393, 11701, 11717, 11743, 13177, 13931, 13997, 16993, 17011, 17117, 17431, 17539, 17713, 19717, 19997, 21737, 23339, 23773, 30197, 31139, 31699, 31771, 32377, 33923, 37217, 38197, 39233, 39499, 39799, 39971
OFFSET
1,1
LINKS
MATHEMATICA
Select[Prime[Range[4500]], Count[FromDigits/@Table[RotateRight[IntegerDigits[#], d], {d, IntegerLength[ #]}], _?PrimeQ]==4&] (* Harvey P. Dale, Aug 31 2024 *)
PROG
(PARI) rot(n) = if(#Str(n)==1, v=vector(1), v=vector(#n-1)); for(i=2, #n, v[i-1]=n[i]); u=vector(#n); for(i=1, #n, u[i]=n[i]); v=concat(v, u[1]); v
eva(n) = subst(Pol(n), x, 10)
is(n) = my(r=rot(digits(n)), i=0); while(r!=digits(n), if(ispseudoprime(eva(r)), i++); r=rot(r)); if(ispseudoprime(eva(r)), i++); if(n==1 || n==11, return(0)); if(i==4, 1, 0)
forprime(p=1, 1e3, if(is(p), print1(p, ", ")))
CROSSREFS
Cf. A270083. Row 4 of A317716.
Cf. primes where exactly k numbers among all circular permutations of digits are prime: A068654 (k=1), A344626 (k=2), A344627 (k=3), A344629 (k=5), A344630 (k=6), A344631 (k=7), A344632 (k=8).
Sequence in context: A040104 A103171 A032530 * A353263 A287049 A153379
KEYWORD
nonn,base
AUTHOR
Felix Fröhlich, May 25 2021
STATUS
approved