The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A153379 Larger of two consecutive prime numbers, p1 and p2 = p1 + d, such that p1*p2*d - d is the average of twin primes. 13
 1193, 8923, 13997, 31847, 33113, 56039, 57593, 66593, 85843, 87803, 90583, 91229, 93503, 101323, 103183, 111697, 113123, 127453, 141403, 142897, 150373, 150413, 151673, 152623, 156823, 157133, 161983, 176849, 179743, 186013, 205963, 209431 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Amiram Eldar, Table of n, a(n) for n = 1..10000 EXAMPLE 1193 since 1187 and 1193 = 1187 + 6 are consecutive primes, 1187*1193*6 - 6 = 8496540, and (8496539, 8496541) are twin primes. MATHEMATICA lst={}; Do[p1=Prime[n]; p2=Prime[n+1]; d=p2-p1; a=p1*p2*d-d; If[PrimeQ[a-1]&&PrimeQ[a+1], AppendTo[lst, p2]], {n, 8!}]; lst l2cpQ[{a_, b_}]:=Module[{d=b-a}, AllTrue[a*b*d-d+{1, -1}, PrimeQ]]; Transpose[ Select[ Partition[Prime[Range[20000]], 2, 1], l2cpQ]][[2]] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Oct 18 2015 *) PROG (Magma) [q:p in PrimesUpTo(210000)| IsPrime(a-1) and IsPrime(a+1) where a is (p*q-1)*(q-p) where q is NextPrime(p)]; // Marius A. Burtea, Jan 03 2020 CROSSREFS Cf. A099349, A153374, A153375, A153376, A153377, A153378. Sequence in context: A344628 A353263 A287049 * A103172 A251923 A251916 Adjacent sequences: A153376 A153377 A153378 * A153380 A153381 A153382 KEYWORD nonn AUTHOR Vladimir Joseph Stephan Orlovsky, Dec 24 2008 EXTENSIONS Name edited by Amiram Eldar, Jan 03 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 8 16:56 EDT 2023. Contains 363165 sequences. (Running on oeis4.)