login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A343639
a(n) = (Sum of digits of 9*n) / 9.
2
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2
OFFSET
0,12
COMMENTS
Similar to, but different from A193582, A326307, ...
Consider g = A008585 = multiply by 3, and its left inverse h = A002264, h o g = id (but g o h = id only on (the range of) A008585). In the spirit of group theory, we can write ad(g) = (x -> h o x o g), then A343638 = ad(A008585)(A007953) and this A343639 = ad(A008585)(A343638) = ad(A008585)^2 (A007953).
FORMULA
a(n) = A007953(A008591(n))/9, by definition. - Felix Fröhlich, May 19 2021
a(n) = A343638(3*n)/3 = A002264(A343638(A008585(n))), i.e., A343639 = A002264 o A343638 o A008585 (just as A343638 = A002264 o A007953 o A008585).
MATHEMATICA
a[n_] := Plus @@ IntegerDigits[9*n]/9; Array[a, 100, 0] (* Amiram Eldar, May 19 2021 *)
PROG
(PARI) A343639(n)=sumdigits(9*n)/9
CROSSREFS
Cf. A007953 (digit sum), A008591 (9n), A343638 (similar for 3), A083824 (9*n reversed and divided by 9), A279777 (a(n)=3).
Sequence in context: A184340 A083911 A326307 * A095827 A193582 A091887
KEYWORD
nonn,base,easy
AUTHOR
M. F. Hasler, May 19 2021
STATUS
approved