Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Jun 04 2021 07:13:57
%S 0,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,2,2,1,1,1,1,1,1,1,1,2,2,2,
%T 1,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,2,1,1,1,1,1,2,2,2,2,2,2,1,
%U 1,1,1,2,2,2,2,2,2,2,1,1,1,2,2,2,2,2,2,2,2,1,1,2,2,2,2,2,2,2,2,2
%N a(n) = (Sum of digits of 9*n) / 9.
%C Similar to, but different from A193582, A326307, ...
%C Consider g = A008585 = multiply by 3, and its left inverse h = A002264, h o g = id (but g o h = id only on (the range of) A008585). In the spirit of group theory, we can write ad(g) = (x -> h o x o g), then A343638 = ad(A008585)(A007953) and this A343639 = ad(A008585)(A343638) = ad(A008585)^2 (A007953).
%F a(n) = A007953(A008591(n))/9, by definition. - _Felix Fröhlich_, May 19 2021
%F a(n) = A343638(3*n)/3 = A002264(A343638(A008585(n))), i.e., A343639 = A002264 o A343638 o A008585 (just as A343638 = A002264 o A007953 o A008585).
%t a[n_] := Plus @@ IntegerDigits[9*n]/9; Array[a, 100, 0] (* _Amiram Eldar_, May 19 2021 *)
%o (PARI) A343639(n)=sumdigits(9*n)/9
%Y Cf. A007953 (digit sum), A008591 (9n), A343638 (similar for 3), A083824 (9*n reversed and divided by 9), A279777 (a(n)=3).
%K nonn,base,easy
%O 0,12
%A _M. F. Hasler_, May 19 2021