login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A343365 Expansion of Product_{k>=1} (1 + x^k)^(8^(k-1)). 7
1, 1, 8, 72, 604, 5148, 43544, 368408, 3112262, 26273542, 221605240, 1867736120, 15730022540, 132385106956, 1113413229000, 9358220560136, 78606905495809, 659886123312449, 5536404584185376, 46424396382193376, 389074608184431328, 3259085506224931424, 27286163457927575200 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Table of n, a(n) for n=0..22.

FORMULA

a(n) ~ exp(sqrt(n/2) - 1/16 - c/8) * 2^(3*n - 7/4) / (sqrt(Pi)*n^(3/4)), where c = Sum_{j>=2} (-1)^j / (j * (8^(j-1) - 1)). - Vaclav Kotesovec, Apr 13 2021

MAPLE

h:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,

      add(h(n-i*j, i-1)*binomial(8^(i-1), j), j=0..n/i)))

    end:

a:= n-> h(n$2):

seq(a(n), n=0..22);  # Alois P. Heinz, Apr 12 2021

MATHEMATICA

nmax = 22; CoefficientList[Series[Product[(1 + x^k)^(8^(k - 1)), {k, 1, nmax}], {x, 0, nmax}], x]

a[n_] := a[n] = If[n == 0, 1, (1/n) Sum[Sum[(-1)^(k/d + 1) d 8^(d - 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]]; Table[a[n], {n, 0, 22}]

PROG

(PARI) seq(n)={Vec(prod(k=1, n, (1 + x^k + O(x*x^n))^(8^(k-1))))} \\ Andrew Howroyd, Apr 12 2021

CROSSREFS

Cf. A098407, A292842, A343353, A343360, A343361, A343362, A343363, A343364, A343366.

Sequence in context: A158798 A229249 A242160 * A062541 A057091 A156566

Adjacent sequences:  A343362 A343363 A343364 * A343366 A343367 A343368

KEYWORD

nonn

AUTHOR

Ilya Gutkovskiy, Apr 12 2021

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 4 13:06 EST 2021. Contains 349526 sequences. (Running on oeis4.)