The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A343365 Expansion of Product_{k>=1} (1 + x^k)^(8^(k-1)). 7
 1, 1, 8, 72, 604, 5148, 43544, 368408, 3112262, 26273542, 221605240, 1867736120, 15730022540, 132385106956, 1113413229000, 9358220560136, 78606905495809, 659886123312449, 5536404584185376, 46424396382193376, 389074608184431328, 3259085506224931424, 27286163457927575200 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS FORMULA a(n) ~ exp(sqrt(n/2) - 1/16 - c/8) * 2^(3*n - 7/4) / (sqrt(Pi)*n^(3/4)), where c = Sum_{j>=2} (-1)^j / (j * (8^(j-1) - 1)). - Vaclav Kotesovec, Apr 13 2021 MAPLE h:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,       add(h(n-i*j, i-1)*binomial(8^(i-1), j), j=0..n/i)))     end: a:= n-> h(n\$2): seq(a(n), n=0..22);  # Alois P. Heinz, Apr 12 2021 MATHEMATICA nmax = 22; CoefficientList[Series[Product[(1 + x^k)^(8^(k - 1)), {k, 1, nmax}], {x, 0, nmax}], x] a[n_] := a[n] = If[n == 0, 1, (1/n) Sum[Sum[(-1)^(k/d + 1) d 8^(d - 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]]; Table[a[n], {n, 0, 22}] PROG (PARI) seq(n)={Vec(prod(k=1, n, (1 + x^k + O(x*x^n))^(8^(k-1))))} \\ Andrew Howroyd, Apr 12 2021 CROSSREFS Cf. A098407, A292842, A343353, A343360, A343361, A343362, A343363, A343364, A343366. Sequence in context: A158798 A229249 A242160 * A062541 A057091 A156566 Adjacent sequences:  A343362 A343363 A343364 * A343366 A343367 A343368 KEYWORD nonn AUTHOR Ilya Gutkovskiy, Apr 12 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 4 13:06 EST 2021. Contains 349526 sequences. (Running on oeis4.)