login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A343363 Expansion of Product_{k>=1} (1 + x^k)^(6^(k-1)). 8
1, 1, 6, 42, 267, 1743, 11234, 72470, 466251, 2996883, 19234836, 123315828, 789682546, 5051601010, 32282443044, 206104519572, 1314652656453, 8378283675645, 53350205335626, 339445117302366, 2158091256282273, 13710402587540469, 87040883294333382, 552205562345916570 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Robert Israel, Table of n, a(n) for n = 0..1000

FORMULA

a(n) ~ exp(sqrt(2*n/3) - 1/12 - c/6) * 6^(n - 1/4) / (2*sqrt(Pi)*n^(3/4)), where c = Sum_{j>=2} (-1)^j / (j * (6^(j-1) - 1)). - Vaclav Kotesovec, Apr 13 2021

MAPLE

N:= 100: # for a(0)..a(N)

G:= mul((1+x^k)^(6^(k-1)), k=1..N):

S:= series(G, x, N+1):

seq(coeff(S, x, k), k=0..N); # Robert Israel, Apr 12 2021

MATHEMATICA

nmax = 23; CoefficientList[Series[Product[(1 + x^k)^(6^(k - 1)), {k, 1, nmax}], {x, 0, nmax}], x]

a[n_] := a[n] = If[n == 0, 1, (1/n) Sum[Sum[(-1)^(k/d + 1) d 6^(d - 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]]; Table[a[n], {n, 0, 23}]

PROG

(PARI) seq(n)={Vec(prod(k=1, n, (1 + x^k + O(x*x^n))^(6^(k-1))))} \\ Andrew Howroyd, Apr 12 2021

CROSSREFS

Cf. A098407, A292840, A343351, A343360, A343361, A343362, A343364, A343365, A343366.

Sequence in context: A158797 A218060 A283328 * A331706 A074429 A062310

Adjacent sequences:  A343360 A343361 A343362 * A343364 A343365 A343366

KEYWORD

nonn

AUTHOR

Ilya Gutkovskiy, Apr 12 2021

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 04:10 EST 2021. Contains 349530 sequences. (Running on oeis4.)