login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A292842
Number of sets of nonempty words with a total of n letters over 8-ary alphabet.
3
1, 8, 92, 1080, 12070, 132408, 1425372, 15114504, 158210353, 1637612160, 16784647360, 170537275776, 1719204122528, 17209440777600, 171165585295552, 1692447401221248, 16644429470981928, 162875924564677824, 1586486181338263456, 15386713233832145728
OFFSET
0,2
LINKS
FORMULA
G.f.: Product_{j>=1} (1+x^j)^(8^j).
a(n) ~ 8^n * exp(2*sqrt(n) - 1/2 - c) / (2 * sqrt(Pi) * n^(3/4)), where c = Sum_{m>=2} (-1)^m/(m*(8^(m-1)-1)) = 0.066582557989772785055691589503818396917... - Vaclav Kotesovec, Sep 28 2017
MAPLE
h:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(h(n-i*j, i-1)*binomial(8^i, j), j=0..n/i)))
end:
a:= n-> h(n$2):
seq(a(n), n=0..30);
CROSSREFS
Column k=8 of A292804.
Sequence in context: A155615 A322650 A221765 * A133271 A180903 A266427
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 24 2017
STATUS
approved